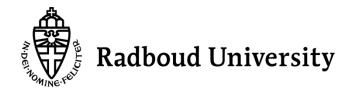


Get to know your data preprocessing, segmentation and artifacts

Robert Oostenveld

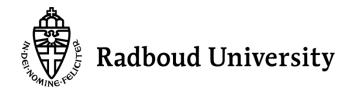
Donders Institute, Radboud University, Nijmegen, NL Karolinska Institutet, Stockholm, SE



Get to know your data artifacts, preprocessing, segmentation

Robert Oostenveld

Donders Institute, Radboud University, Nijmegen, NL Karolinska Institutet, Stockholm, SE

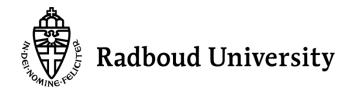


Get to know your data artifacts, segmentation, preprocessing

Robert Oostenveld

Donders Institute, Radboud University, Nijmegen, NL Karolinska Institutet, Stockholm, SE

shared slides



Get to know your data

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}.$$

Robert Oostenveld

Donders Institute, Radboud University, Nijmegen, NL Karolinska Institutet, Stockholm, SE

shared slides

Get to know your data – learning goals

What are the characteristics of the data that we use in the analysis? How to organize your raw data?

Quality assessment and control What are the artifacts and why are they relevant?

Preprocessing and segmenting (or vice versa) Selective averaging to get ERPs/ERFs

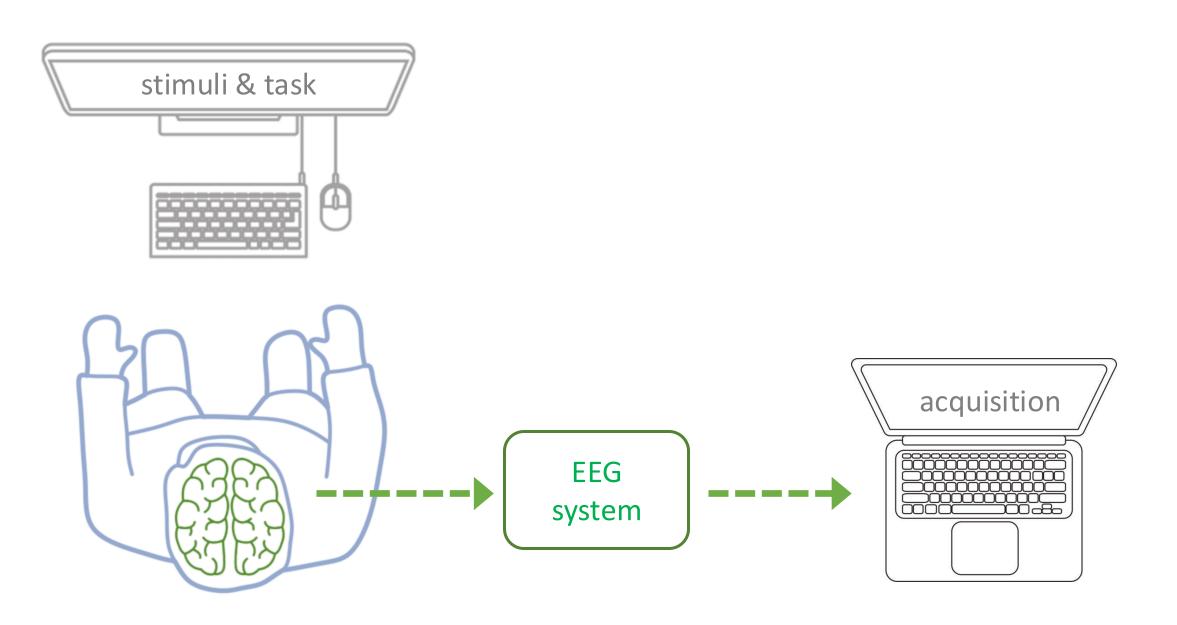
shared slides

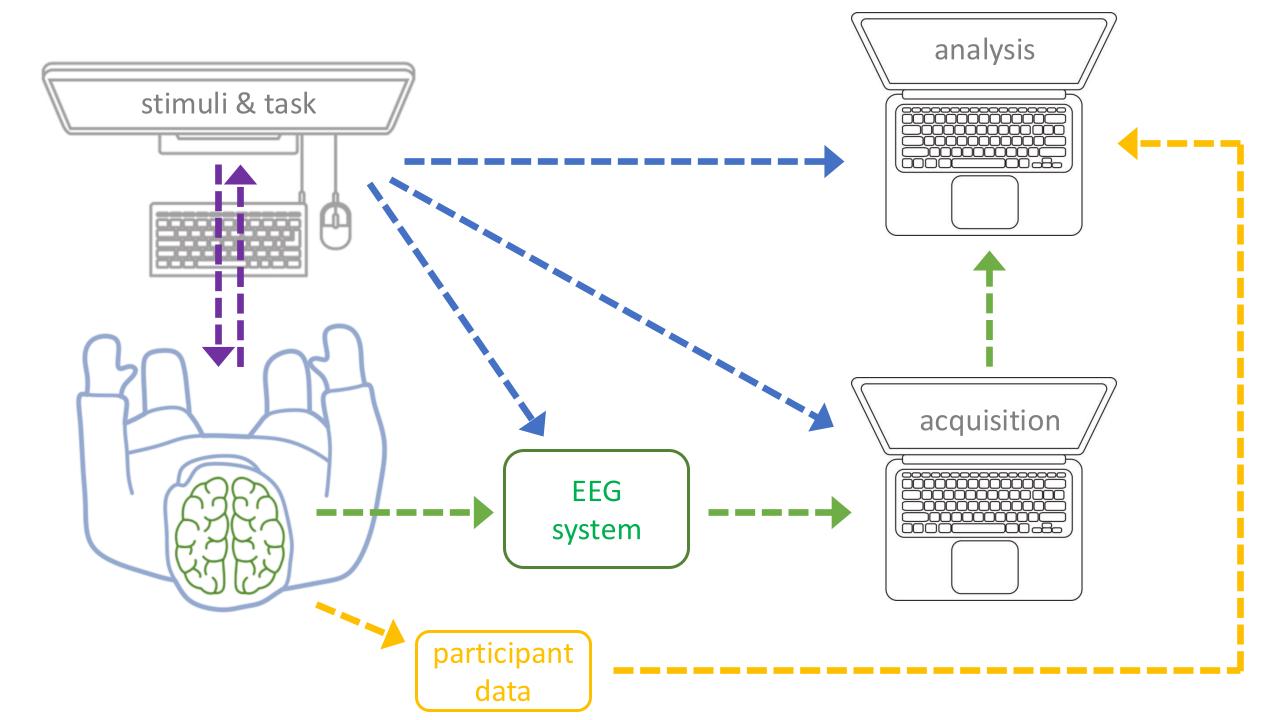
Collecting your data – in the lab or not

1. You have designed your own study, recruited your own participants, and collected your own data in the lab.

2. You have received data from a (former) colleague in the lab, or downloaded it from an online repository.

Either way: **organize it!**





Preprocessing, processing, analysis

Prior to preprocessing

Data curation: collecting all files, naming them consistently, etc.

EEG/MEG data is large, consists of many files, and is complex

EEG data characteristics

64 channels, 500 Hz, 1 hour is approx. 500 MB Typical study ~30 subjects, 15 GB of raw data

Many EEG companies, hence many file formats.

Analysis often done on laptops.

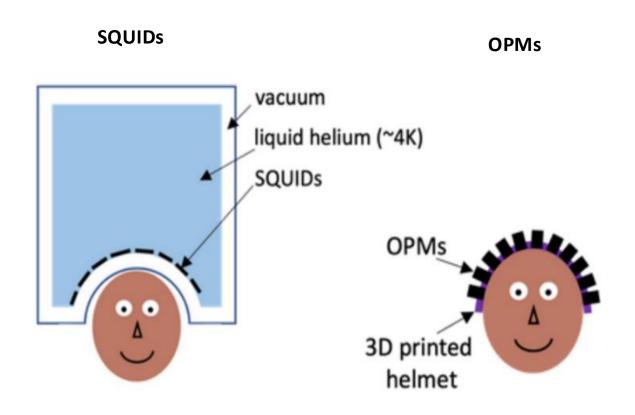
MEG data characteristics SQUID-based systems

275 or 306 channels, 1000 Hz, 1 hour is approx. 4 GB Typical study ~30 subjects, 120 GB of raw data

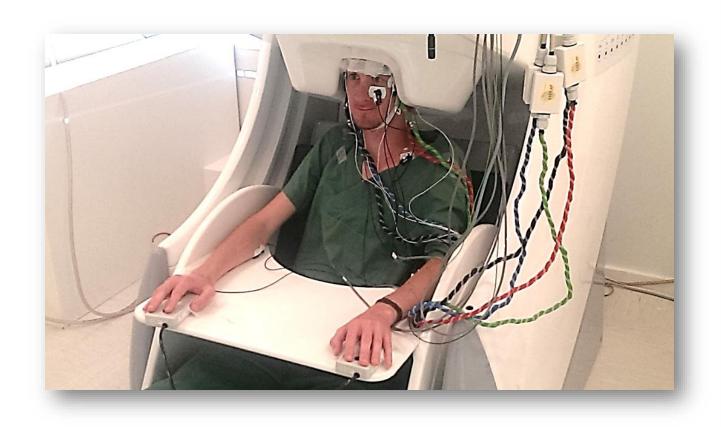
Few MEG companies, hence small number of formats
Neuromag/Elekta/MEGIN: one recording is one *.fif file
CTF: one recording is one *.ds directory with ~10 files

Analysis often done on "large" computers.

MEG data characteristics OPM-based systems

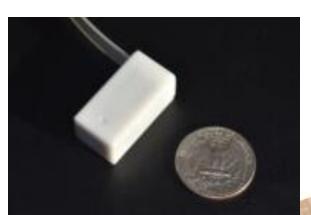


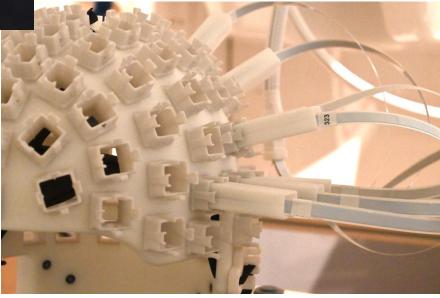
SQUIDs versus OPMs



FieldLine OPM system at Karolinska/Stockholm

now upgraded to 128 sensors (256 channels) and a smart helmet





CercaMagnetics OPM system installed in Cardiff

MEG data characteristics OPM-based systems

A single OPM sensor can have 1-3 channels (x, y, z)
Total system has anywhere between 1 to 384 channels
Typical study ~30 subjects, 120 GB of raw data

OPM sensors can be placed in a flexible cap, like EEG, or in a 3D printed helmet

Position of the sensors relative the cap/helmet and to the head.

3D scans of the head and sensors, Polhemus digitizer, etc.

Auxiliary data

Anatomical MRI data

Directly from the scanner as ~200 DICOM files (*.ima, *.dcm) Commonly converted to NIfTI format, one file (*.nii or *.nii.gz) ~ 50 MB

Behavioural data (time-resolved)

Mostly encoded as "triggers" together with the MEG or EEG data stream Stimulus presentation log file Video and/or audio recordings (e.g., for verbal responses) Eye tracker for gaze and pupil diameter

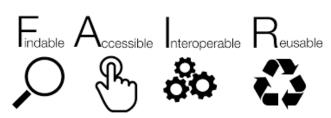
kB to GB

...

Other data (usually tabular, not time-resolved)

Handedness, gender, age, ... Questionare outcomes ~ 1 kB

Organize your data FAIR



Make your data available in a catalog or repository with a persistent identifier (DOI, handle) and metadata

Accessible

Be explicit about data usage terms (agreement with downloader)

Interoperable

Make your data human and machine readable, e.g. BIDS

Reusable

Make sure you document enough details, e.g. "data descriptor" paper that can be cited, along with citing our data -> measurable impact!

Organize your data FAIR

BIDS is a community initiative to make your data more FAIR

BIDS is a way to organize your existing raw data

To improve consistent and complete documentation

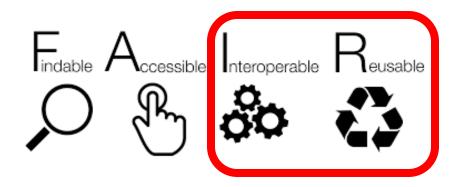
To facilitate re-use by your future self and others

BIDS is not

A new file format

A search engine

A data sharing platform



BIDS for EEG and MEG

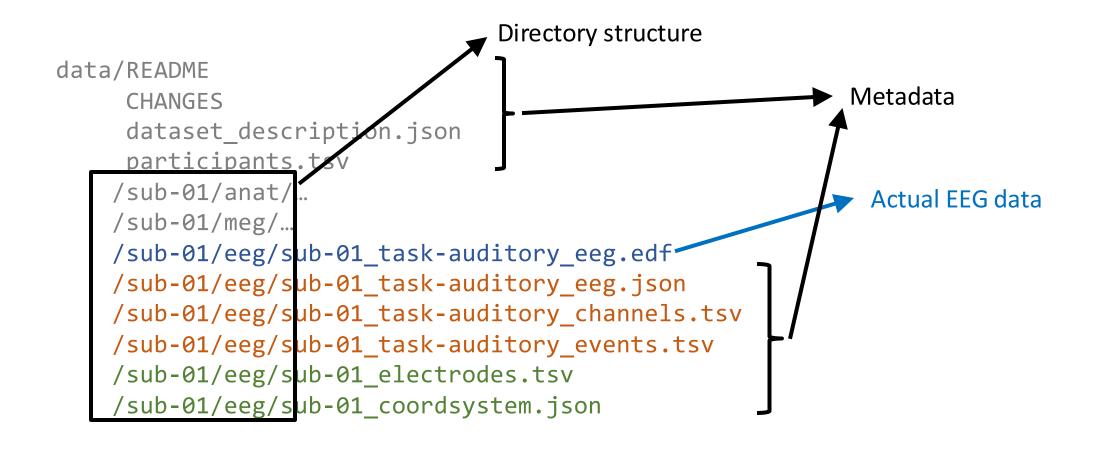
also for iEEG, MRI, NIRS, PET, motion capture, ...

Just a bunch of directories and files on disk.

No special software required (although tools are available).

BIDS for EEG and MEG

also for iEEG, MRI, NIRS, PET, motion capture, ...



BIDS "sidecar" files for metadata

see also https://github.com/bids-standard/bids-examples

- 1) represent otherwise missing data
- 2) make it easier to query/search

As example for EEG and MEG:

_participants.tsv and json

_sessions.tsv and json

_scans.tsv and json

meg.json

_events.tsv and json

_channels.tsv and json

_electrodes.tsv and json

_coordsystem.json

_photos.jpg

"SamplingFrequency": 1100,

"Manufacturer": "ElektaNeuromag",

"ManufacturersModelName": "ElektaVectorview",

"MEGChannelCount": 306.

	onset	duration	onset_sample	stim_type	trigger	stim_file	
	23.93	0	26323	Unfamiliar	13	meg/u101.bmp	
	27.1709	0	29888	Unfamiliar	14	meg/u101.bmp	
	30.3782	0	33416	Famous	5	meg/f043.bmp	
	33.4355	0	36779	Famous	5	meg/f046.bmp	
	36.6091	0	40270	Unfamiliar	13	meg/u061.bmp	l
	39.85	0	43835	Unfamiliar	14	meg/u061.bmp	1
	43.0073	0	47308	Famous	5	meg/f050.bmp	
	46.1318	0	50745	Famous	6	meg/f050.bmp	
	49.3055	0	54236	Scrambled	17	meg/s082.bmp	
	52.3455	0	57580	Famous	5	meg/f147.bmp	
	55.67	0	61237	Famous	6	meg/f147.bmp	
	58.7273	0	64600	Famous	7	meg/f043.bmp	
	62.0682	0	68275	Famous	5	meg/f130.bmp	
	65.2591	0	71785	Famous	6	meg/f130.bmp	
L	68.3836	0	75222	Famous	7	meg/f046.bmp	
L	71.5909	0	78750	Unfamiliar	13	meg/u106.bmp	
	74.8309	0	82314	Unfamiliar	13	meg/u140.bmp	
	78.0545	0	85860	Unfamiliar	14	meg/u140.bmp	ļ
	81.2118	0	89333	Scrambled	17	meg/s020.bmp	
	84.4527	0	92898	Scrambled	18	meg/s020.bmp	
	87.6936	0	96463	Scrambled	19	meg/s082.bmp	
	90.8682	0	99955	Famous	5	meg/f066.bmp	
	94.0582	0	103464	Unfamiliar	13	meg/u091.bmp	
ш							

10% system",

stimuli on a screen

Get to know your data – learning goals

What are the characteristics of the data that we use in the analysis? How to organize your raw data?

Quality assessment and control
What are the artifacts and why are they relevant?

Preprocessing and segmenting (or vice versa)
Selective averaging to get ERPs/ERFs

Preprocessing, processing, analysis

Prior to preprocessing

Data curation: collecting all files, naming them consistently, etc.

First processing steps do not depend so much on the research question

Quality assessment

Artifact removal

Filtering, baseline correction

Aligning stimulus presentation and behavioral data with EEG/MEG

Segmenting/epoching

Aligning MRI with EEG/MEG sensors and anatomical processing

Later steps are more tightly linked to the research question

Averaging ERPs in specific conditions

Computing power spectra, time-frequency analysis, connectivity

Source reconstruction

Modelling (e.g., using GLM)

Statistical inference

Preprocessing, processing, analysis

Prior to preprocessing

Data curation: collecting all files, naming them consistently, etc.

First processing steps do not depend so much on the research question

Quality assessment

Artifact removal

Filtering, baseline correction

Aligning stimulus presentation and behavioral data with EEG/MEG

Segmenting/epoching

Aligning MRI with EEG/MEG sensors and anatomical processing

Later steps are more tightly linked to the research question

Averaging ERPs in specific conditions

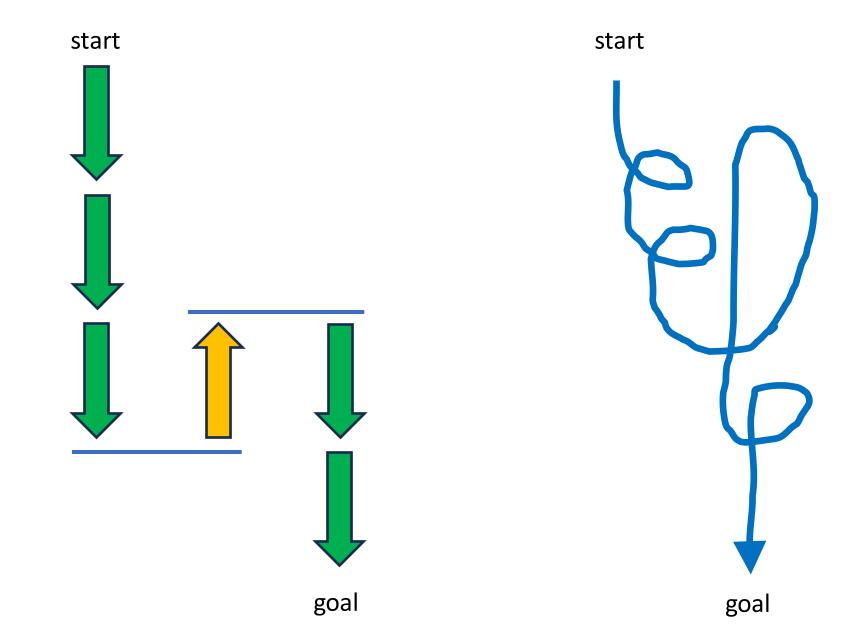
Computing power spectra, time-frequency analysis, connectivity

Source reconstruction

Modelling (e.g., using GLM)

Statistical inference

You should plan for multiple iterations of the preprocessing



Quality control and artifacts

EEG electrodes attached to subject's head Bad attachment -> bad signals

MEG is not directly attached to subject

Few bad channels (dependent on hardware tuning)

EEG artifacts

Anything that causes potential differences

MEG artifacts

Anything that causes magnetic fields

EEG artifacts

~1.000.000 Volt

1,5 Volt

1-10 micro Volt

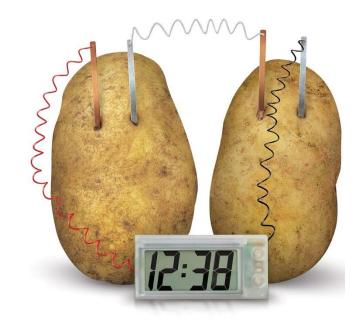
EEG artifacts

Poor contact with the scalp

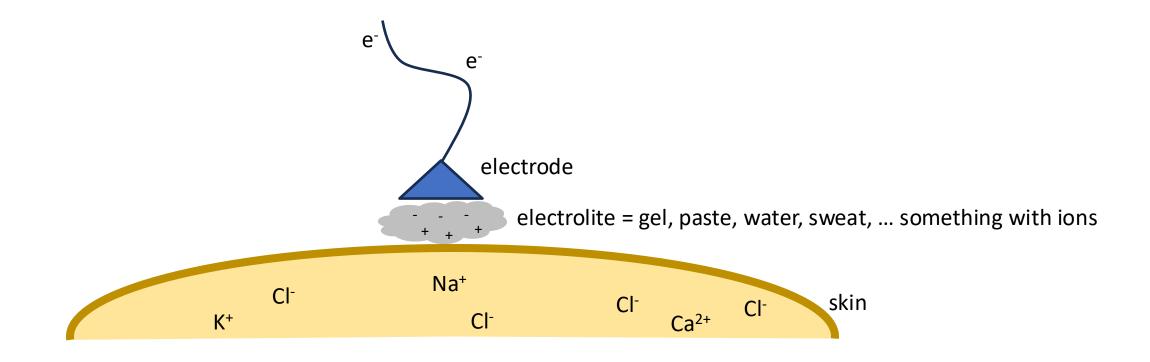
Electrochemical noise (sweating)
Electrostatic noise (e.g., rubbing feet over the carpet)
Mostly common-mode, i.e., similar on all channels

Power line noise, 50Hz electrical equipment

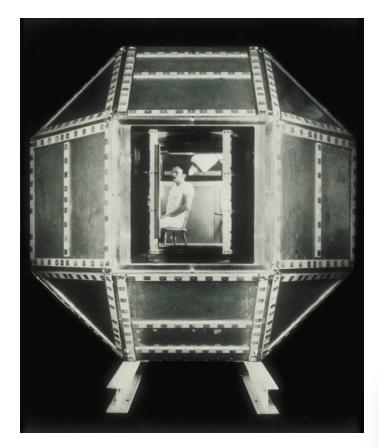
Other types of (physiological) bioelectricity
Muscle (EMG)
Heart (ECG)
Eye movements (EOG)



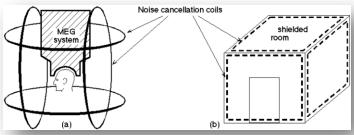
EEG electrode movement



MEG artifacts (and shielding)



magnetically shielded room (MSR) built by David Cohen at MIT in 1969



MRI magnet 3 T

> Earth field 10⁻⁵ T

Human brain 10⁻¹² T

Common MEG artifacts

Power line noise, 50Hz equipment

Large metal objects moving outside the MSR

Car, trolly, elevator, the fan of airconditioning

Residual field of the earth

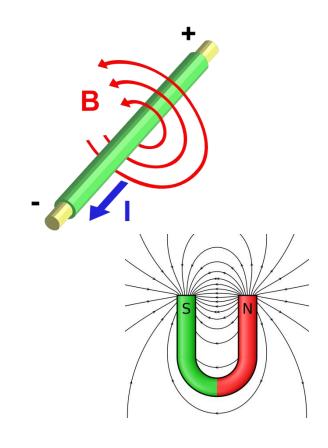
Building vibrations cause movements of the MSR walls and dewar

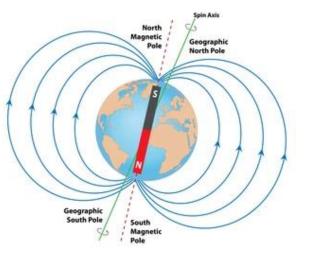
Other types of (physiological) bioelectricity

Muscle (EMG)

Heart (ECG)

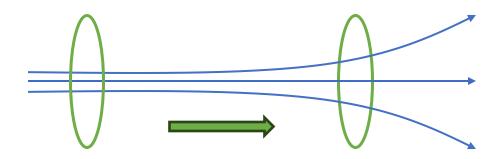
Eye movements (EOG)

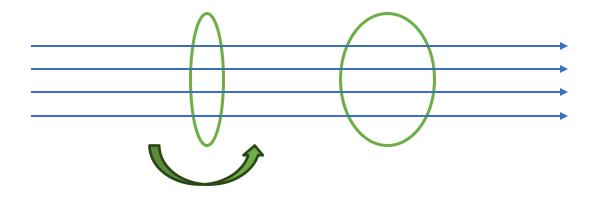


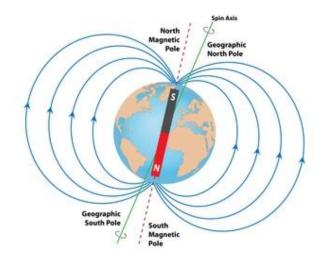


Movements in mobile MEG with OPMs

moving the sensor in the residual gradient or rotating the sensor in the residual field







EEG/MEG artifact removal

Identify and remove bad channels (or interpolate)

Identify and remove bad segments

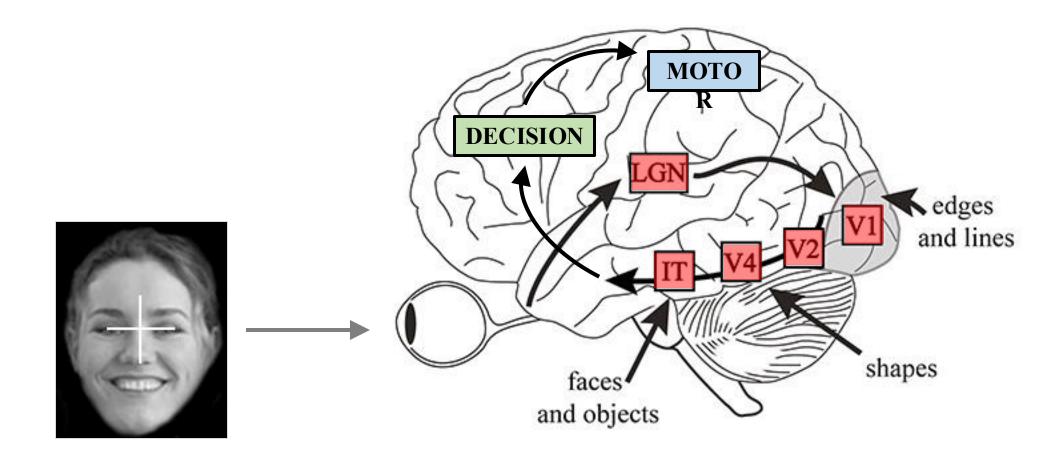
Continuous data

Segmented data, only the pieces of interest

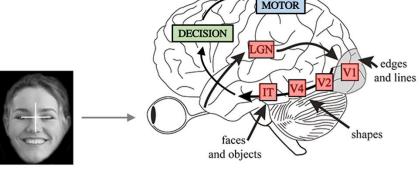
Identify trials in which the **behavior was incorrect** or in which the data **cannot be recovered**.

The brain is a hierarchical functional network

both sequential and parallel processing, ff and fb



EEG/MEG to study perception, cognition and behavior



Our experimental task and behavioral readouts ensure that we are tapping in to the desired cognitive processes.

Infant EEG, baby looking away -> they did not see the stimulus

Participant blinks at the stimulus -> they did not see the stimulus

No response in stimulus-response task -> the stimulus was probably processed differently

Participant responds too slow -> a different cognitive process was interfering

The experimental task often involves attention monitoring, includes catch trials, or an extra condition with responses, these **behavioral responses** (or artifacts) need to be analyzed.

EEG/MEG data cleaning

Only **after** rejecting data corresponding to bad behavior and broken data, we proceed to clean the remainder.

The data is a spatio-temporal mixing of different sources. Spatio-temporal models can separate brain and noise sources.

For EEG: ICA, PCA, IClabel, ASR, MARA, GEDAI

For MEG: 3rd order gradients, SSS/tSSS (Maxfilter), SSP, HFC, AMM, ICA

These are based on **data-driven** or **biophysical** models of the spatial distribution of the brain activity or the noise.

Get to know your data – learning goals

What are the characteristics of the data that we use in the analysis? How to organize your raw data?

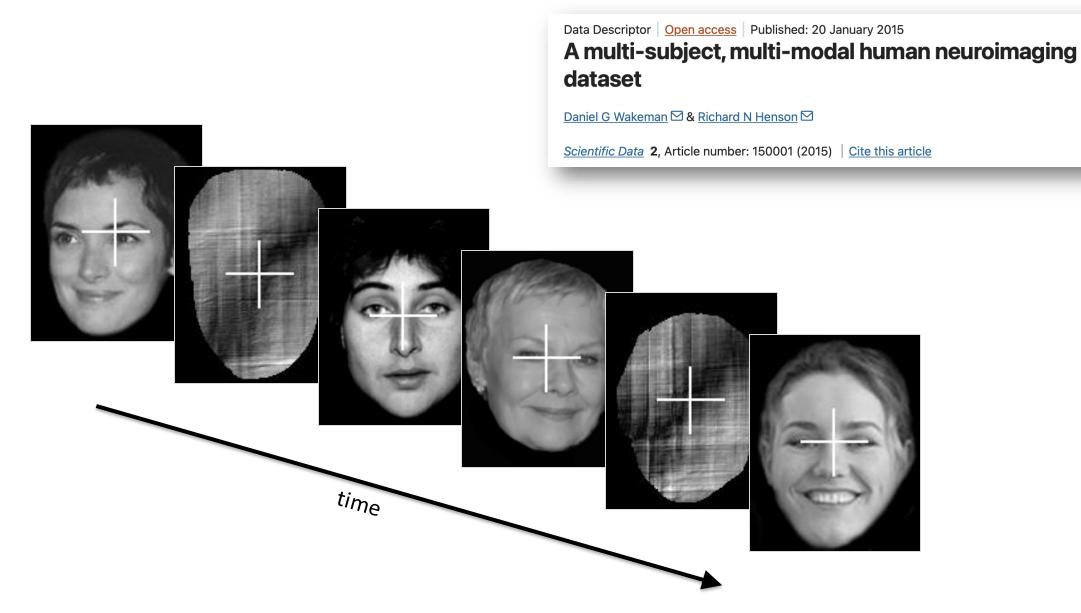
Quality assessment and control
What are the artifacts and why are they relevant?

Preprocessing and segmenting (or vice versa)
Selective averaging to get ERPs/ERFs

Signal-to-Noise-Ratio (SNR) is not sufficient to directly observe the brain responses

Stimulus or task is repeated many times (i.e. trials)

For example: one trial every 4 seconds, ~900 trials in one hour Experimental manipulation is usually a subtle difference between trials EEG/MEG response of interest is only about 1 second around the stimulus So 1 hour recording results in only ~900 seconds of useable data



900 trials

900 times a picture of "something"

900 trials

600 faces

300 unfamiliar

300 familiar (i.e., celebrities)

300 scrambled faces

900 trials

150 unfamilar faces 1st time, 150 unfamilar faces 2nd time

150 familar faces 1st time, 150 familar faces 2nd time

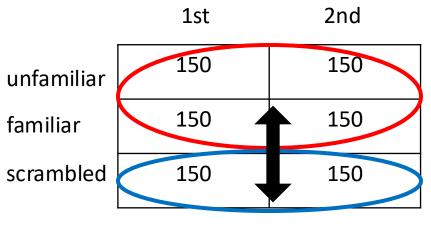
150 scrambled faces 1st, 150 scrambled 2nd time

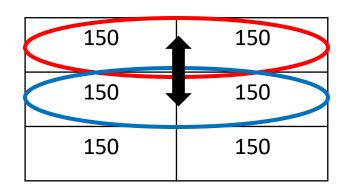
	1st presentation	2nd presentation
unfamiliar	150	150
familiar	150	150
scrambled	150	150

Also other dimensions: gender, emotional expression, gaze direction, ...

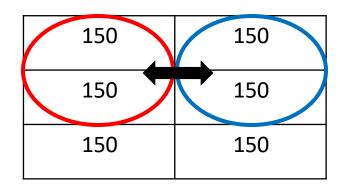
Multi-factorial design:

stimulus × presentation × gender × emotional expression × gaze direction × ...

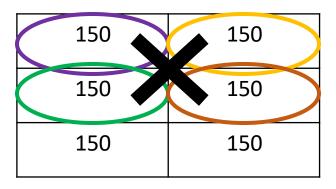




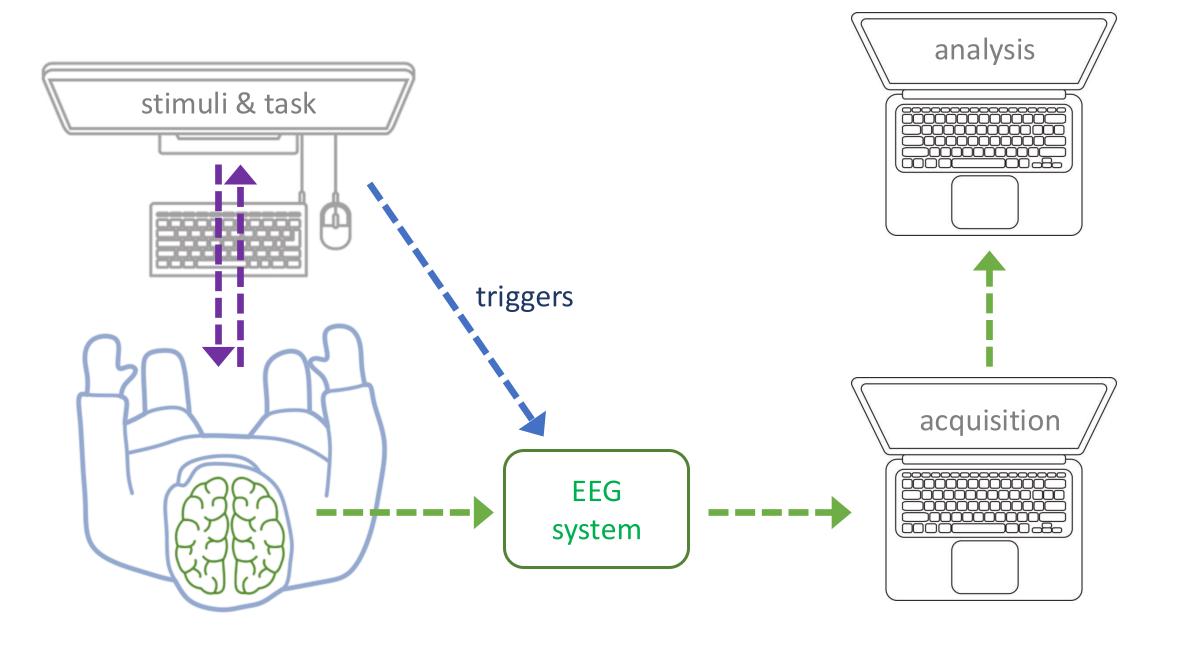
unfamiliar vs familiar

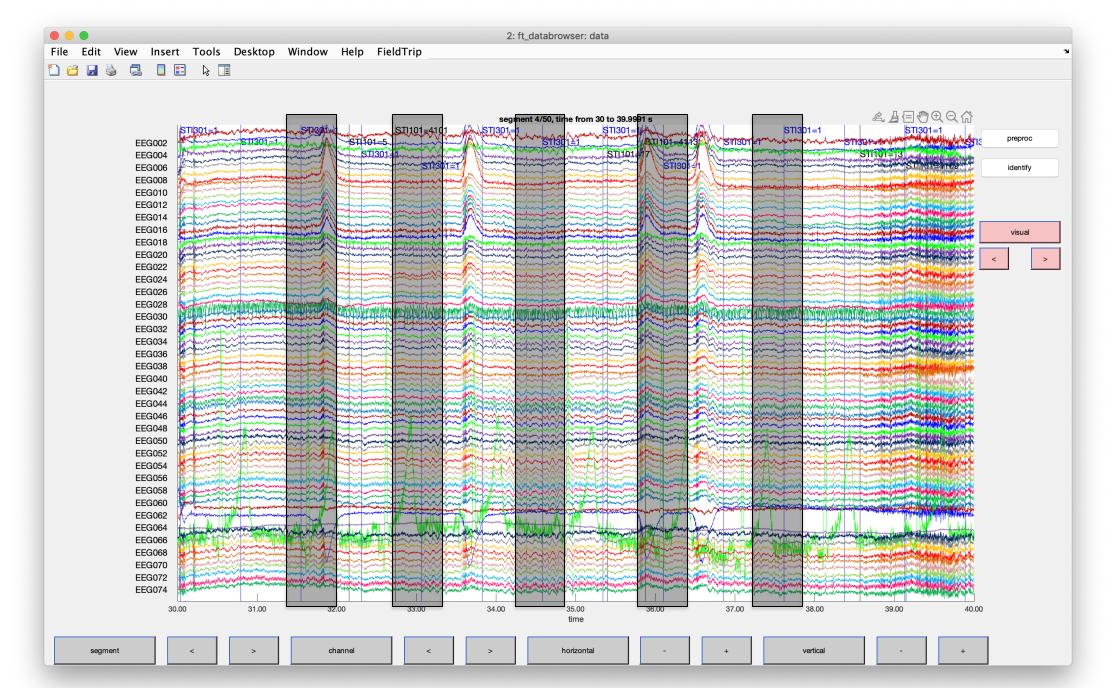


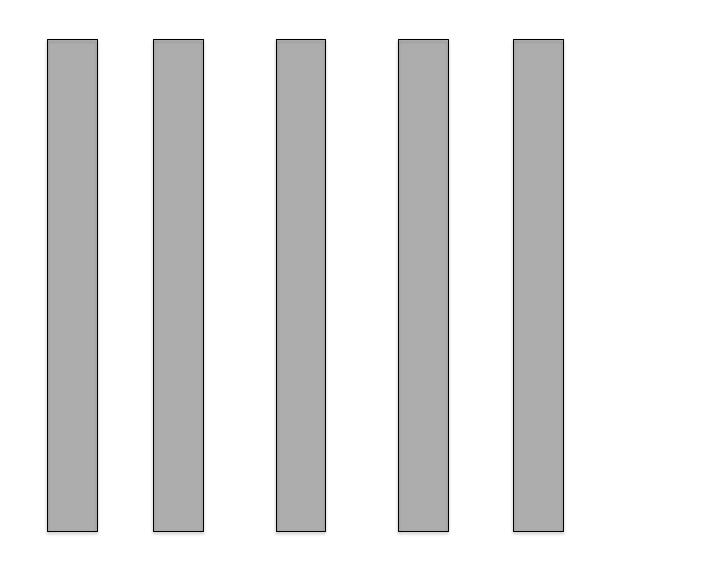
1st vs 2nd presentation



interaction (ANOVA)



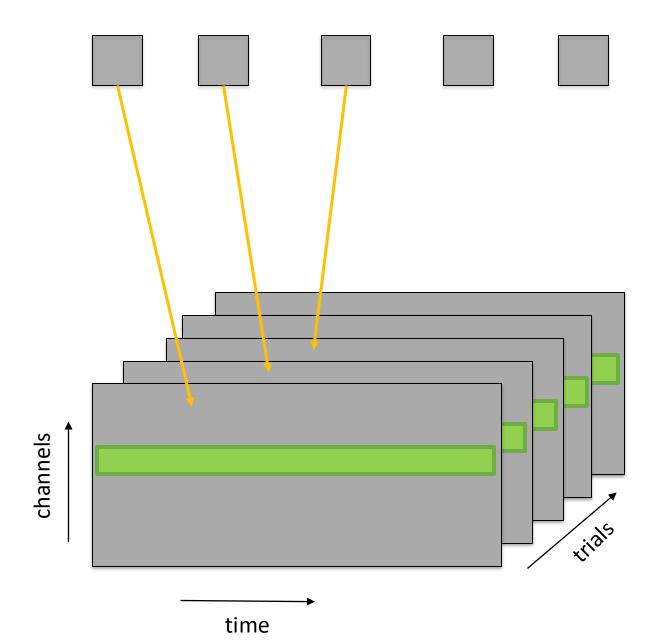


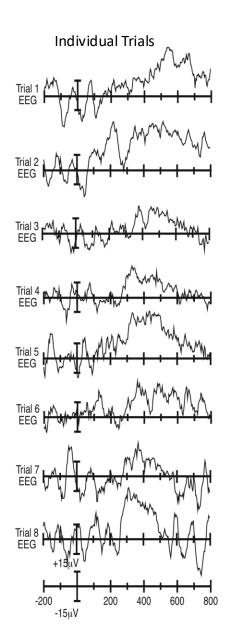


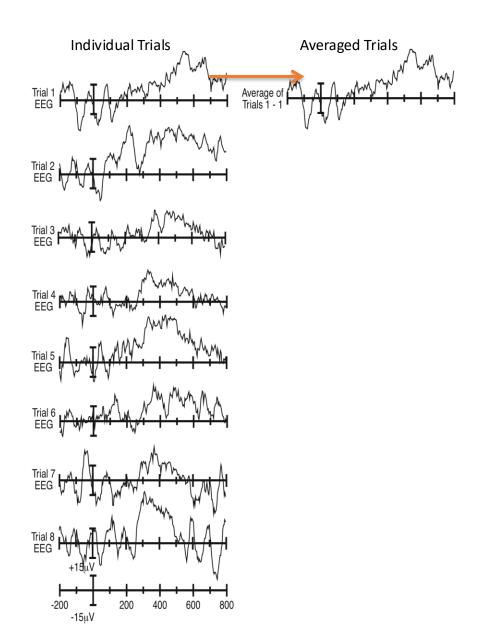
~900 trials ~64 channels ~ 1 second = 1100 samples

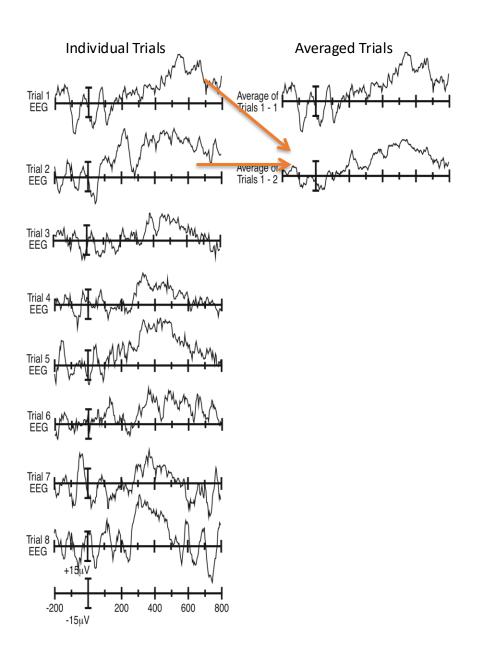
So 900x64x1100 = 63.000.000 numbers

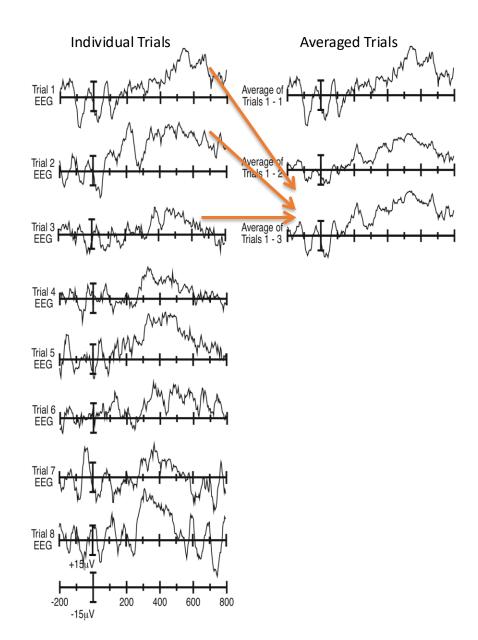
... times 16 subjects

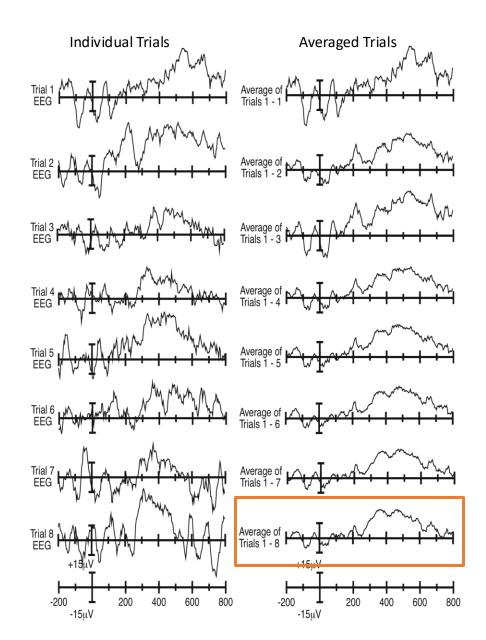












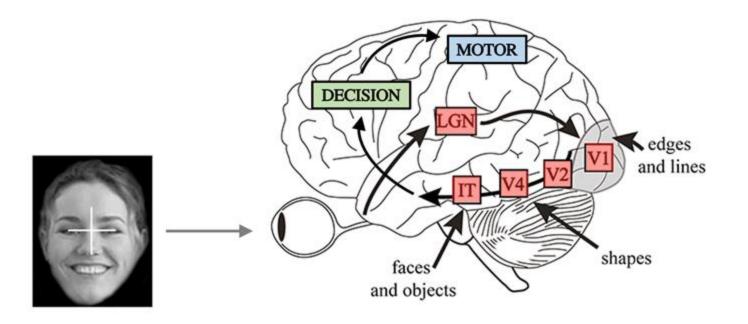
The brain *signal* of interest is assumed to be constant over all trials. The *noise* is independent over trials.

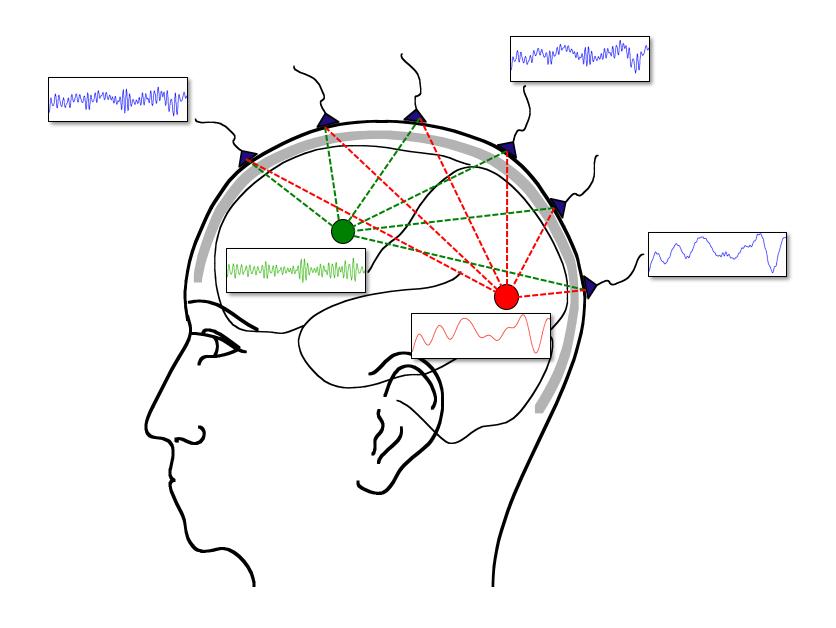
After averaging the noise is proportional to 1/sqrt(Ntrials).

Averaging over trials improves the signal-to-noise ratio (SNR).

```
10 trials \rightarrow SNR is sqrt(10) \cong 3x better
```

100 trials \rightarrow SNR is sqrt(100) \cong 10x better





Data = signal + noise

Related to the task, constant over trials

Not related to the task

Data in condition 1 = signal₁ + noise*

Data in condition $2 = signal_2 + noise$

 $ERP_1 = average(Data in condition 1) = signal_1 + noise$

 ERP_2 = average(Data in condition 2) = signal₂ + noise

 $ERP_1 - ERP_2 = signal_1 - signal_2 + noise$

```
Data = signal + noise
```

Data in condition $1 = visual + reconition_1 + noise$

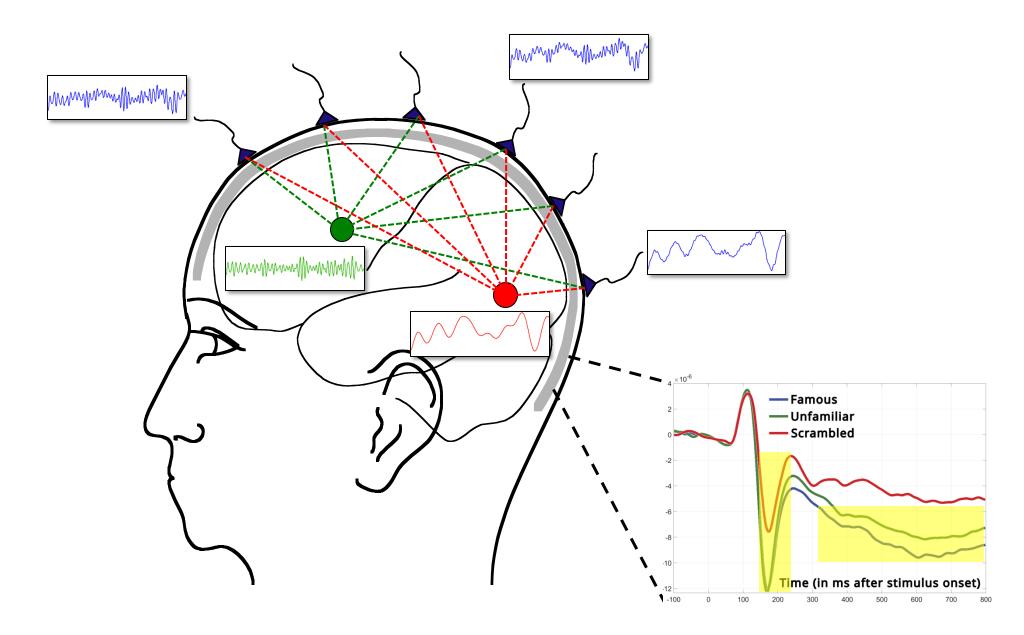
Data in condition 2 = visual + $recognition_2$ + noise

 ERP_1 = average(Data in condition 1) = visual + recognition₁ + noise

 ERP_2 = average(Data in condition 2) = visual + $recognition_2$ + noise

 $ERP_1 - ERP_2 = reconition_1 - recognition_2 + noise$

ERP difference to tap into specific cognitive process followed by statistics, etc.

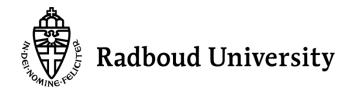


Get to know your data – learning goals

What are the characteristics of the data that we use in the analysis? How to organize your raw data?

Quality assessment and control
What are the artifacts and why are they relevant?

Preprocessing and segmenting (or vice versa)
Selective averaging to get ERPs/ERFs



Get to know your data artifacts, segmentation, preprocessing

Robert Oostenveld

Donders Institute, Radboud University, Nijmegen, NL Karolinska Institutet, Stockholm, SE

robert.oostenveld@donders.ru.nl

shared slides

