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1. spectral analysis – computation


2. spectral analysis – interpretation


3. time-frequency analysis


4. volume conduction
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spectral analysis 
– computation



motivation
• how to detect systematic patterns in 

data?

• express measured data as a linear 
combination of several factors 

• fit a model consisting of two factors

• data ~ coeff1 * X1 + coeff2 * X2 
  here:                       linear                       sine

purpose
• description of data in an efficient way
• explain the data
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data + model fitting
• 1 second of EEG data (500 data points)
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data + model fitting
• 1 second of EEG data (500 data points)

• attempt 1:  
model fit with 1 sine with fixed frequency 
 
data ~ coeff1 * sine1
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data + model fitting
• 1 second of EEG data (500 data points)

• attempt 1:  
model fit with 1 sine with fixed frequency 
 
data ~ coeff1 * sine1

• attempt 2:  
model fit with 1 complex sine (sine + 
cosine) with fixed frequency 
 
data ~ coeff1A * sine1  + coeff1B * cosine1 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data + model fitting
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data + model fitting – more data
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1 complex sine with frequency 10.7 Hz



data + model fitting – more data
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20 complex sines with frequency 5–15 Hz



data + model fitting
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500 complex sines with frequency 0–250 Hz



concepts / different views

• “multivariate linear model with 
complex sinusoids as regressors”


• no degrees of freedom, no 
remaining residual → overfitting

10

• “Fourier transform”, a transform 
into the spectral domain


• signal representation, perfect 
reconstruction possible

input 
time series, N samples 

output 
N coefficients for N/2 

sinusoids

computation

statistical modeling signal processing

two views on the same procedure



computation: Welch’s method
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time series, cut into small segments  
[nr_segments x nr_samples]

time series, multiplied with a 
windowing function 
[nr_segments x nr_samples]

spectra for each segment  
[nr_segments x nr_frequencies]

average across frequencies to 
obtain the spectrum 
[1 x nr_frequencies]

frequency [Hz] 

po
w

er



example output for real EEG data
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linear-linear linear-log log-log

diffferent ways to show the same output of the spectral estimation



methods: parameters in general

common spectral analysis 
parameters 
• length of data segments

• number of points per 

segment

• percentage of overlap

• type of taper
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What are the “correct” parameters?  
Choice depends on analysis goal. Different 

parameters enable flexibility in analysis.

if in doubt: 


• starting point: take the ones from your elders /  
previous literature


• change parameters and observe effects, 
effects should be robust for similar parameters  
→ sensitivity analysis


• simulate!



• frequency resolution of the spectrum depends on the number of 
used samples for each segment


Example 

• segment length:     1s →   1    2     3   4  … Hz 

• segment length:     2s → 0.5    1   1.5   2  … Hz 

• segment length:   0.1s →  10    20   30   40 … Hz

methods: frequency resolution
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frequency resolution



methods: frequency resolution
• changing the settings how many samples per segment are used 

determines frequency resolution.
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0.1 s =



methods: frequency resolution
• changing the settings how many samples per segment are used 

determines frequency resolution.
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methods: frequency resolution
• changing the settings how many samples per segment are used 

determines frequency resolution.
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methods: frequency resolution
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methods: frequency resolution
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methods: frequency resolution
• changing the settings how many samples per segment are used 

determines frequency resolution.
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methods: frequency resolution
• changing the settings how many samples per segment are used 

determines frequency resolution.
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methods: frequency resolution
• changing the settings how many samples per segment are used 

determines frequency resolution.
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methods: taper / window function

23

time [s]
window length [s]
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time domain



methods: taper / window function
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window length [s]

w
in

do
w

 fu
nc

tio
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frequency [Hz]
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no window
Hann window

spectral domain

spectral 
leakage



methods: multitaper, goal: increase SNR

25figure from:  Mike X. Cohen – Analyzing Neural Time Series Data



other functions as factors?
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spectral 
analysis does 

not explain 
neuro-

physiological 
generative 

mechanisms



spectral analysis 
interpretation



variability & oscillation power, example: EEG
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Interpretation

Oscillations are variable across participants.



measure: oscillation frequency & power
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measure: 
“alpha-frequency”

alpha 
rhythm

phenomenon:
“alpha-rhythm”

Donoghue, Schaworonkow, Voytek  
European Journal of Neuroscience (2021)



pitfalls: frequency changes across frequency boundaries
• observation: 

oscillation frequency 
changes drastically 
over the course of 
development


• here posterior 
dominant rhythm, 
human EEG
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pitfalls: frequency changes across frequency boundaries
• observation: 

oscillation frequency 
changes drastically 
over the course of 
development


• here posterior 
dominant rhythm, 
human EEG
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posterior     dominant 
rhy        thm               

measure: “alpha-
frequency”

measure: “theta-
frequency”

alpha-rhythm?

theta-rhythm?



non-rhythmic contributions, 1/f-activity
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Interpretation

Schaworonkow & Voytek 
Developmental Cognitive Neuroscience (2021)



non-rhythmic contributions, 1/f-activity

• 1/f-activity:  
power scales with frequency  
scale free dynamics
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pitfalls: not only rhythmic changes + rhythms can be absent
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“alpha-power”

rhythm

“theta-power”

“delta-power”

“beta-power”

rhythm

rhythm

rhythm



pitfalls: not only rhythmic changes + rhythms can be absent
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pitfalls: not only rhythmic changes + rhythms can be absent
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pitfalls: not only rhythmic changes + rhythms can be absent
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new measures needed?
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1/f-corrected alpha power = 
improved way to measure 
oscillatory contribution more 
specifically?
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measure:
“alpha-power”

alpha 
rhythm

1/f-
activity

measure: 
“1/f-corrected 
alpha-power”
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new measures needed?

Donoghue, Schaworonkow, Voytek 
European Journal of Neuroscience, 2021

Two ways to plot the same result: 
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changes between 2 
conditions per frequency 

band

changes between 2 
conditions in terms of 1/f-

exponent



same summary measures, different signal generation
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figure from: Palva & Palva 

NeuroImage, 2012



• neural rhythms show amplitude modulation. 

phenomenon: amplitude modulation

Interpretation
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effects of amplitude modulation on spectrum

Interpretation

• amplitude modulation can contribute to a broadened spectral peak.
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effects of amplitude modulation on spectrum

Interpretation

• amplitude modulation can contribute to a broadened spectral peak.
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higher frequency spectral peaks
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beta-band

✅ verify presence of peak

✅ identify frequency of peak in beta-band

• additional spectral peaks in higher 
frequency bands: genuine rhythms or 
harmonic contributions?



pitfalls: waveform shape & spectral peaks
• individual spectral 

peaks ≠ 
independent 
rhythms


• non-sinusoidal 
waveforms → 
harmonic peaks in 
the spectrum.
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example: non-sinusoidal waveform in ECoG data
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waveform shape & spectral peaks: concepts
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“alpha-power”

“beta-power”

alpha 
rhythm

beta 
rhythm

distinct 
oscillators

alpha 
rhythm

non-sinusoidal 
waveform shape

alpha 
rhythm

non-sinusoidal 
waveform shape + 
distinct oscillators

beta 
rhythm



what about phase?
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Interpretation

same spectrum – different time domain signals: the power 
spectrum only captures a part of the available information



what about phase?
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Interpretation

same spectrum – different time domain signals: the power 
spectrum only captures a part of the available information



time-frequency 
analysis



motivation
• How to assess 

temporal dynamics 
across a trial?

→ time-frequency 
representation! (TFR)
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computation

47

time series, cut into small segments  
[nr_segments x nr_samples]

time series, multiplied with a 
windowing function 
[nr_segments x nr_samples]

spectra for each segment  
[nr_segments x nr_frequencies]

average across frequencies to 
obtain the spectrum 
[1 x nr_frequencies]



computation

47

time series, cut into small segments  
[nr_segments x nr_samples]

time series, multiplied with a 
windowing function 
[nr_segments x nr_samples]

spectra for each segment  
[nr_segments x nr_frequencies]

rotate by 90 degrees 
stack spectra from segments  
& plot in color


→ time-frequency representation



example output for MEG data

figure from: Jurkiewicz et al. (2006)

• rich spectral power 
dynamics in different 
frequency bands


• often, a baseline/
normalization procedure 
or contrast is employed.
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methods: parameters
• influence of parameters: window length / number of cycles

49 figure from: Moca et al. (2021)



methods: parameters
• different approaches for selecting segment length

50
figure from:  

https://www.fieldtriptoolbox.org/tutorial/sensor/timefrequencyanalysis 

fixed window length


no matter the frequency

segment length changes


with frequency

https://www.fieldtriptoolbox.org/tutorial/sensor/timefrequencyanalysis


methods – inter-trial coherence
• phase information from the time-frequency representation can be used to 

investigate inter-trial coherence (ITC)

51



methods – inter-trial coherence

figure from: Fakche et al. (2022)

• comparing ITCs of two different trial 
groups


• research question: does oscillation phase 
matter for perception of phosphenes? 
“optimal phase”


• two trial groups: phosphenes perceived 
vs phosphenes not perceived


• compute ITC for both conditions


• check if statistically different


• inference: oscillatory phase influences 
whether participants perceive a 
phosphene
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concepts: evoked vs. induced
• order of operations 

matters
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averaged ERPs

single trials

same-phase:
 persistent activity

 random-phase:
interference

1

N

event onset

figure from: B. Ehinger:  
https://www.s-ccs.de/teaching-resources/open-teaching-graphics/Induced-Evoked/ 

https://www.s-ccs.de/teaching-resources/open-teaching-graphics/Induced-Evoked/


concepts: oscillations vs. evoked responses
• time-frequency representation 

of an evoked response shows 
a peak in the theta frequency 
band ⟺ genuine rhythms

54

Interpretation

figure from: Gourévitch et al., 
Neuroscience and Biobehavioral 
Reviews  (2020)

→ TFR on its own is 
agnostic about 

generative mechanisms!



volume conduction



power spectra across channels – data

• channels are not independent


• different signal contributions will 
overlap and result in multiple 
spectral peaks
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volume conduction – simulation
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EEG is a mixture of different signals – data
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EEG is a mixture of different signals – data
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EEG is a mixture of different signals – simulation
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alpha rhythm contributions
eyes closed

lef
t h

em
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rig
ht

 he
mi

sp
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re

occipital
parietal
sensorimotor
temporal

3D head model, 
EEG electrodes
& alpha sources

figure from: Schaworonkow & Nikulin  NeuroImage (2022)

observed spectral 
peak could come 

from a region far far 
away from the 

electrode. 



how do auditory sources end up on Cz? – simulation
• depending on structure + 

dynamics, activation can show 
up on sensor locations that are 
very far away from source 
locations

61

tomorrow: source 
estimation lectures + 

hands on!



time-
frequency 

representation

inter-
trial 

coherence

Fourier 
Transform

Welch’s 
Method

tapers

multi-
taper

frequency 
resolution

oscillations

1/f-
activity

amplitude 
modulation

volume 
conduction

harmonics/ 
waveform 

shape

spatial 
patterns

computation interpretation

generative 
model of  
M/EEG


