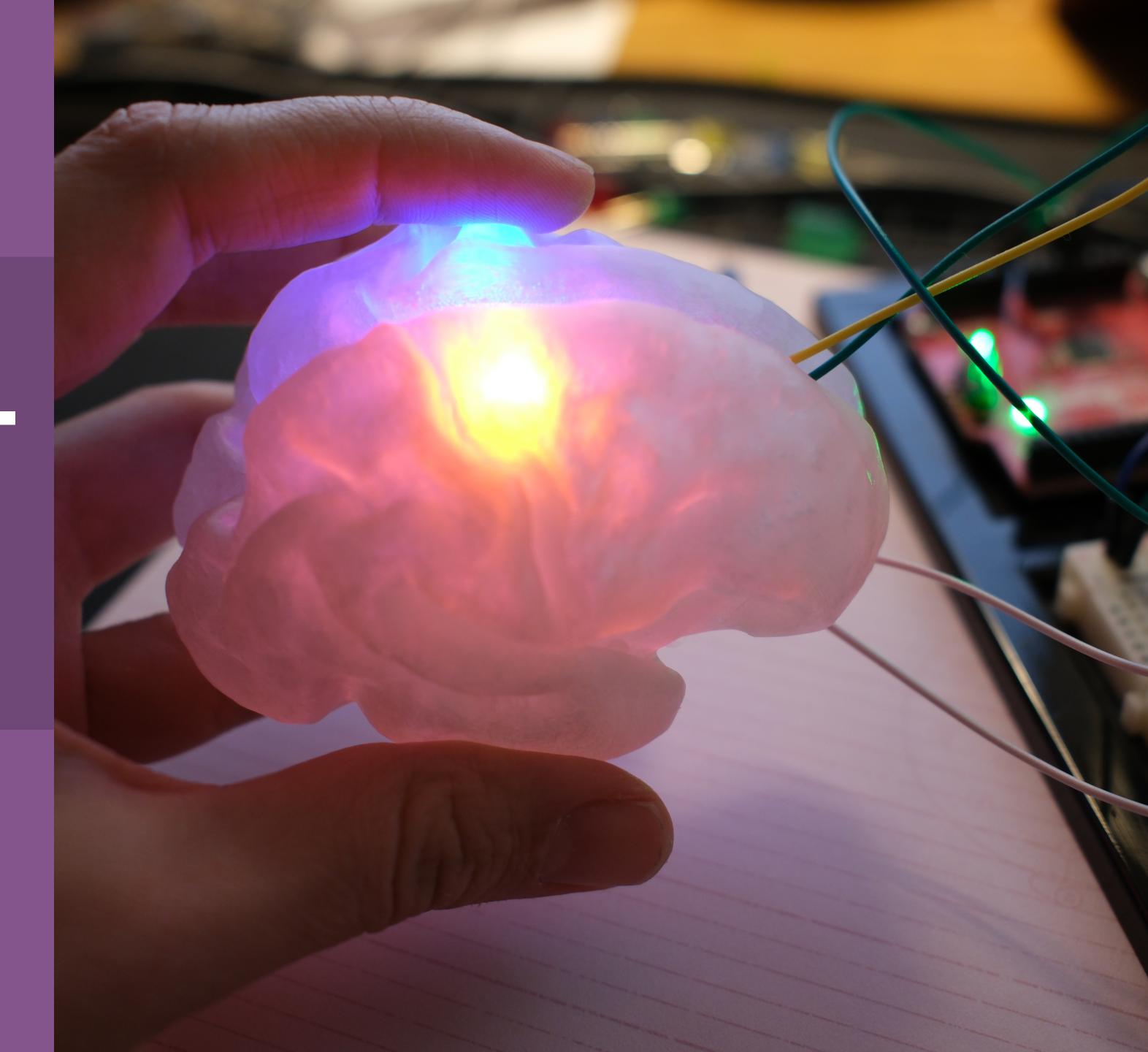
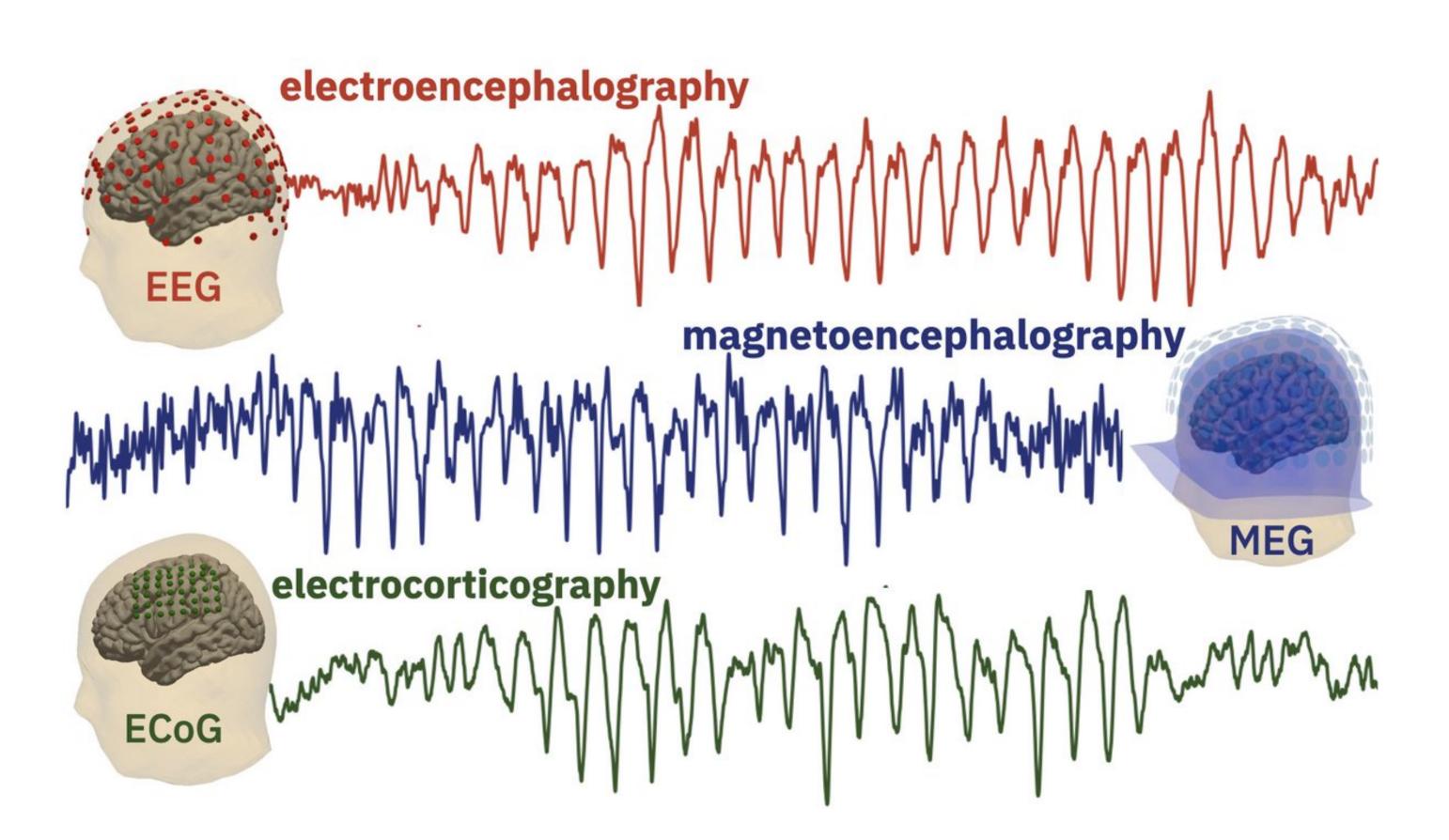
Spectral & Time-Frequency Analysis

Natalie Schaworonkow
Oct 28th 2025



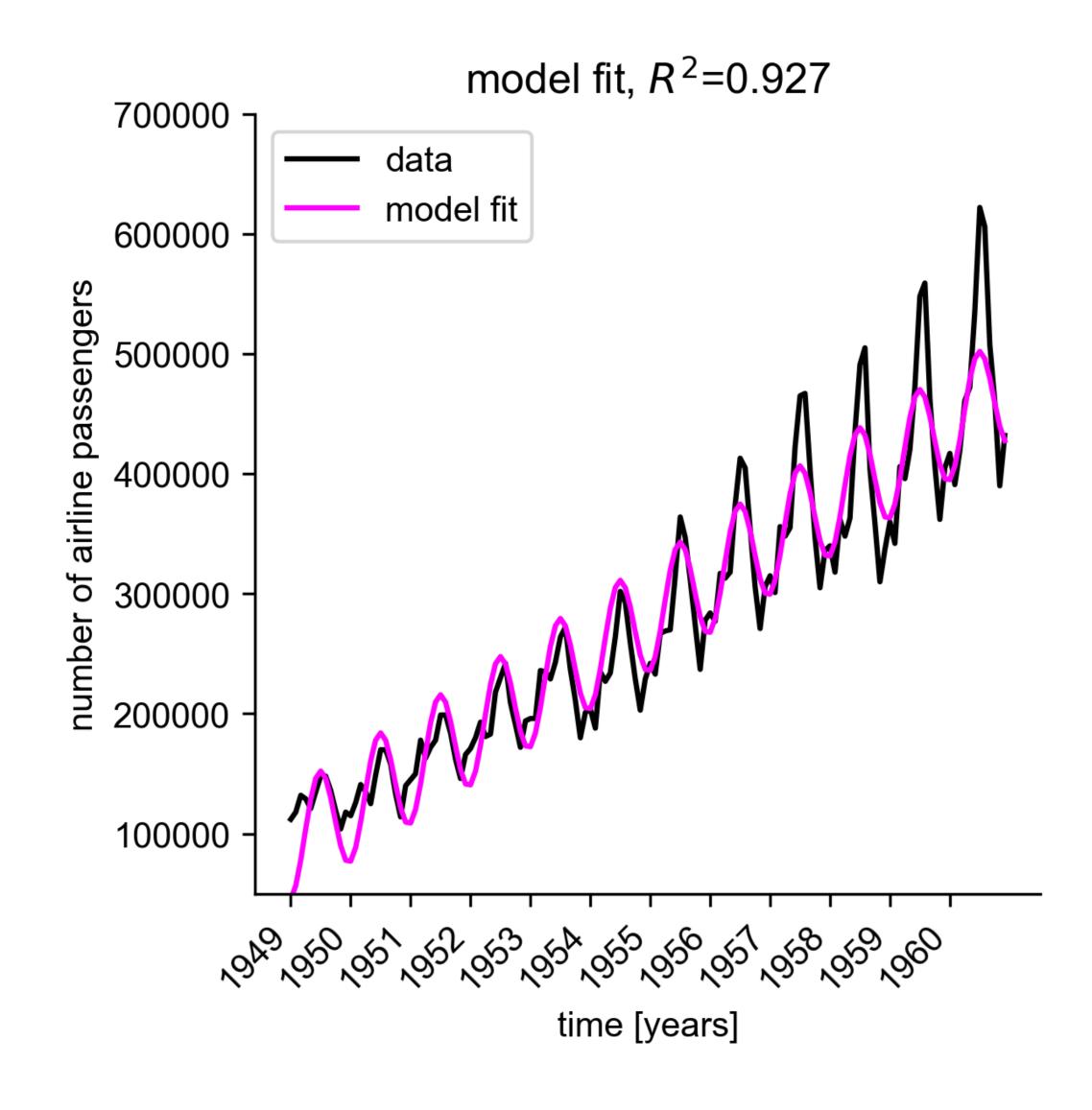
Outline

- 1. spectral analysis computation
- 2. spectral analysis interpretation
- 3. time-frequency analysis
- 4. volume conduction



spectral analysis - computation

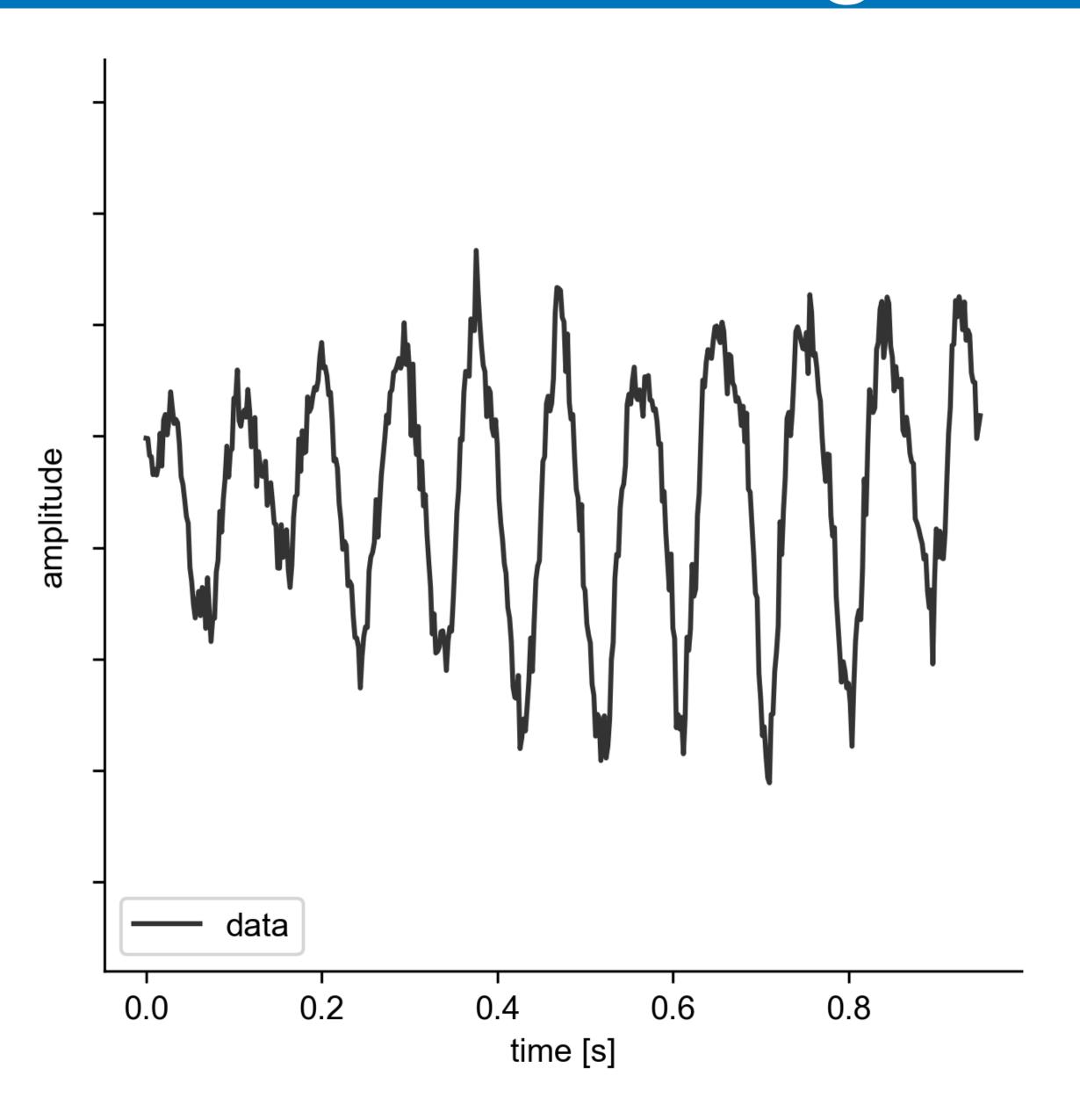
motivation



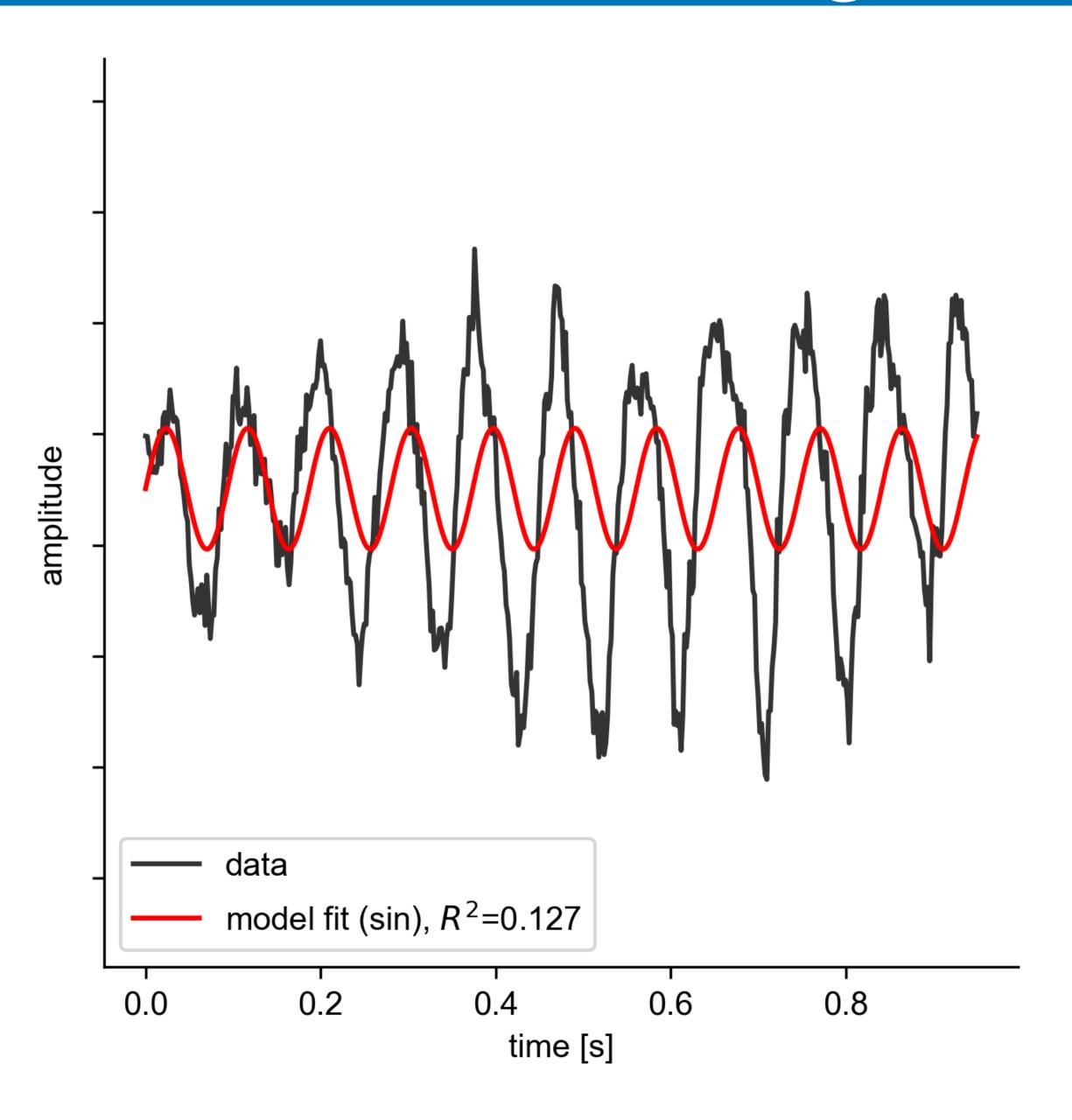
- how to detect systematic patterns in data?
- express measured data as a linear combination of several factors
- fit a model consisting of two factors
 - data ~ coeff₁ * X_1 + coeff₂ * X_2 here: linear sine

purpose

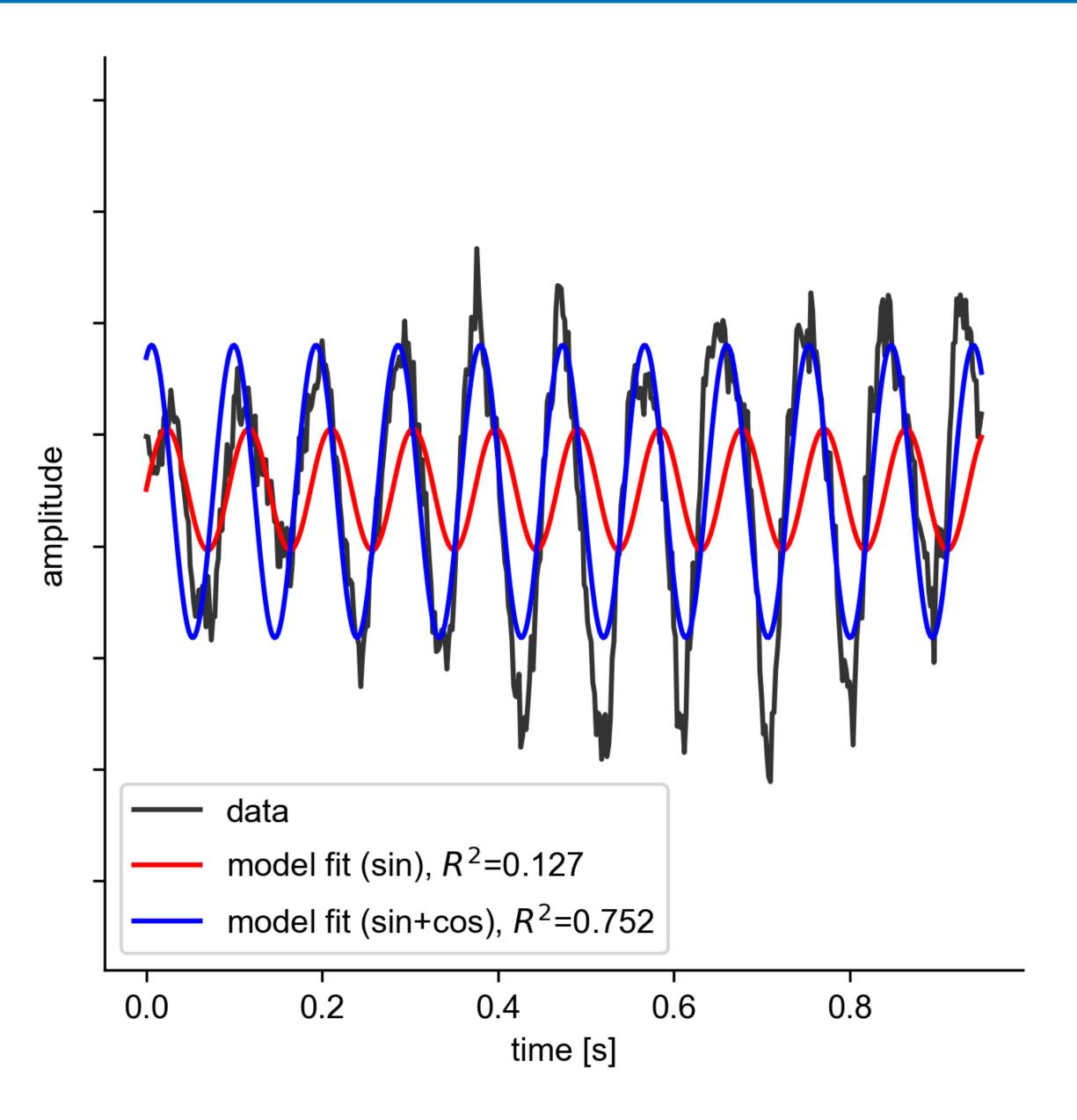
- description of data in an efficient way
- explain the data



• 1 second of EEG data (500 data points)

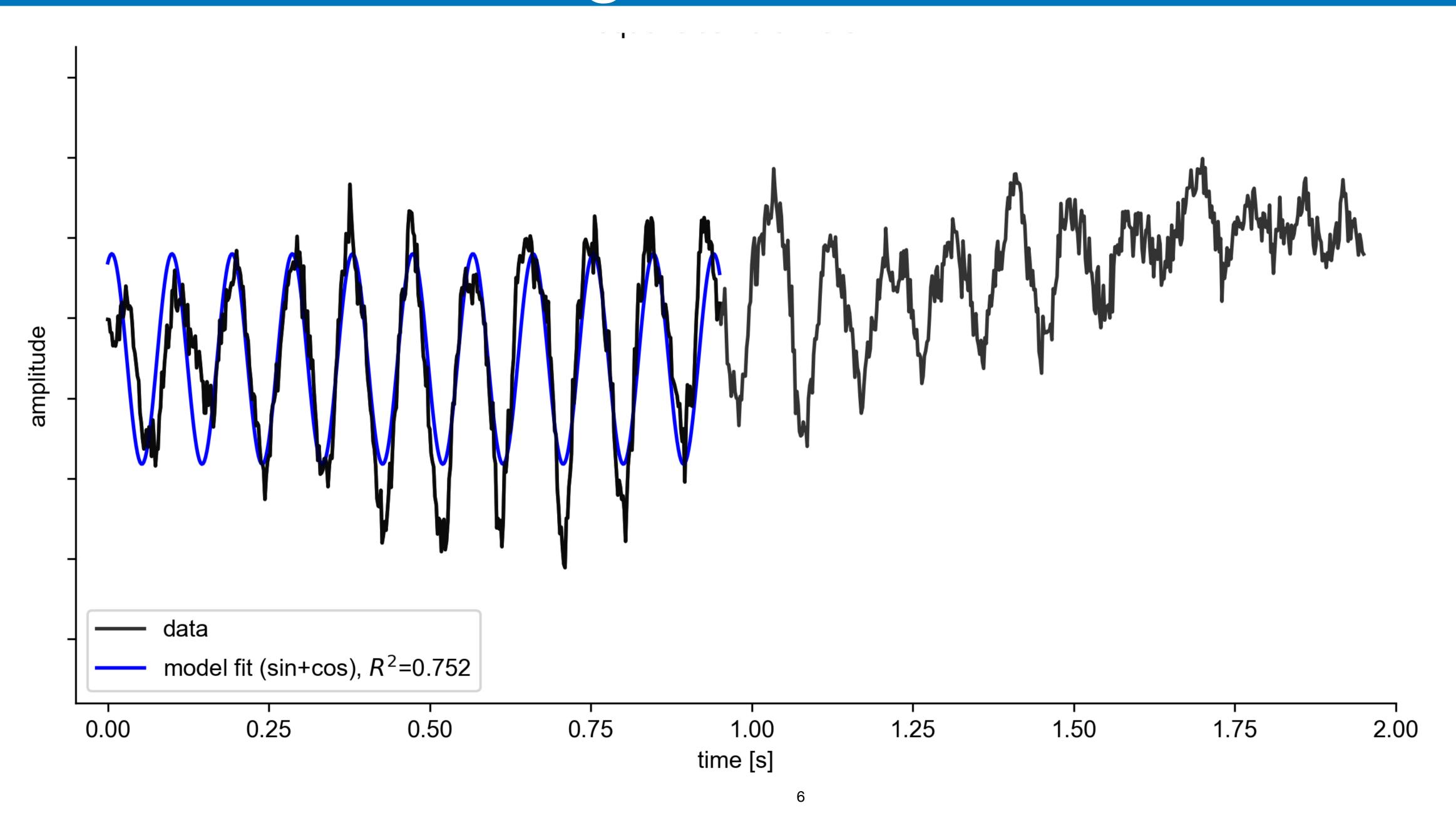


- 1 second of EEG data (500 data points)
- attempt 1: model fit with 1 sine with fixed frequency
 data ~ coeff₁ * sine₁

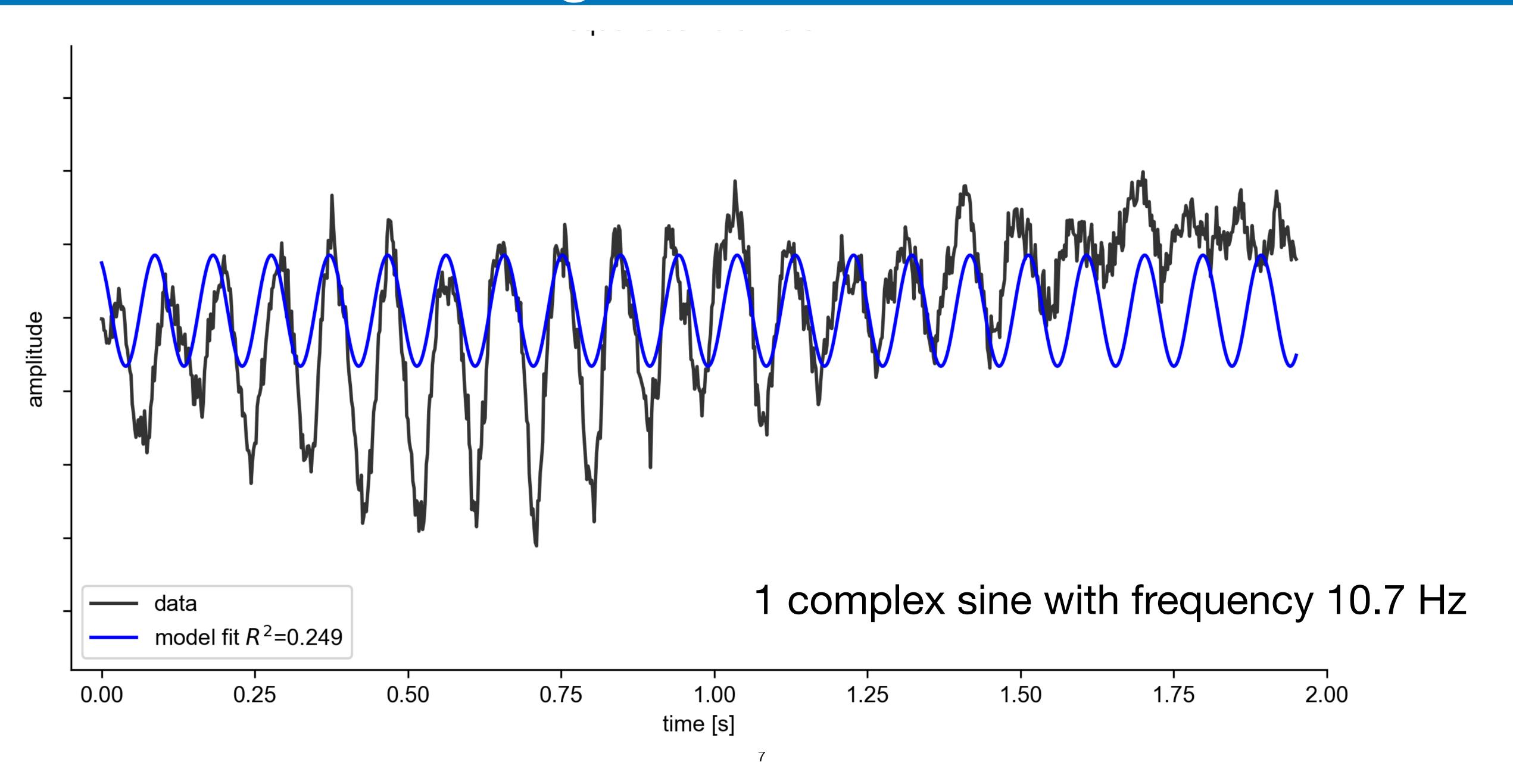


- 1 second of EEG data (500 data points)
- attempt 1: model fit with 1 sine with fixed frequency
 data ~ coeff₁ * sine₁
- attempt 2: model fit with 1 complex sine (sine + cosine) with fixed frequency

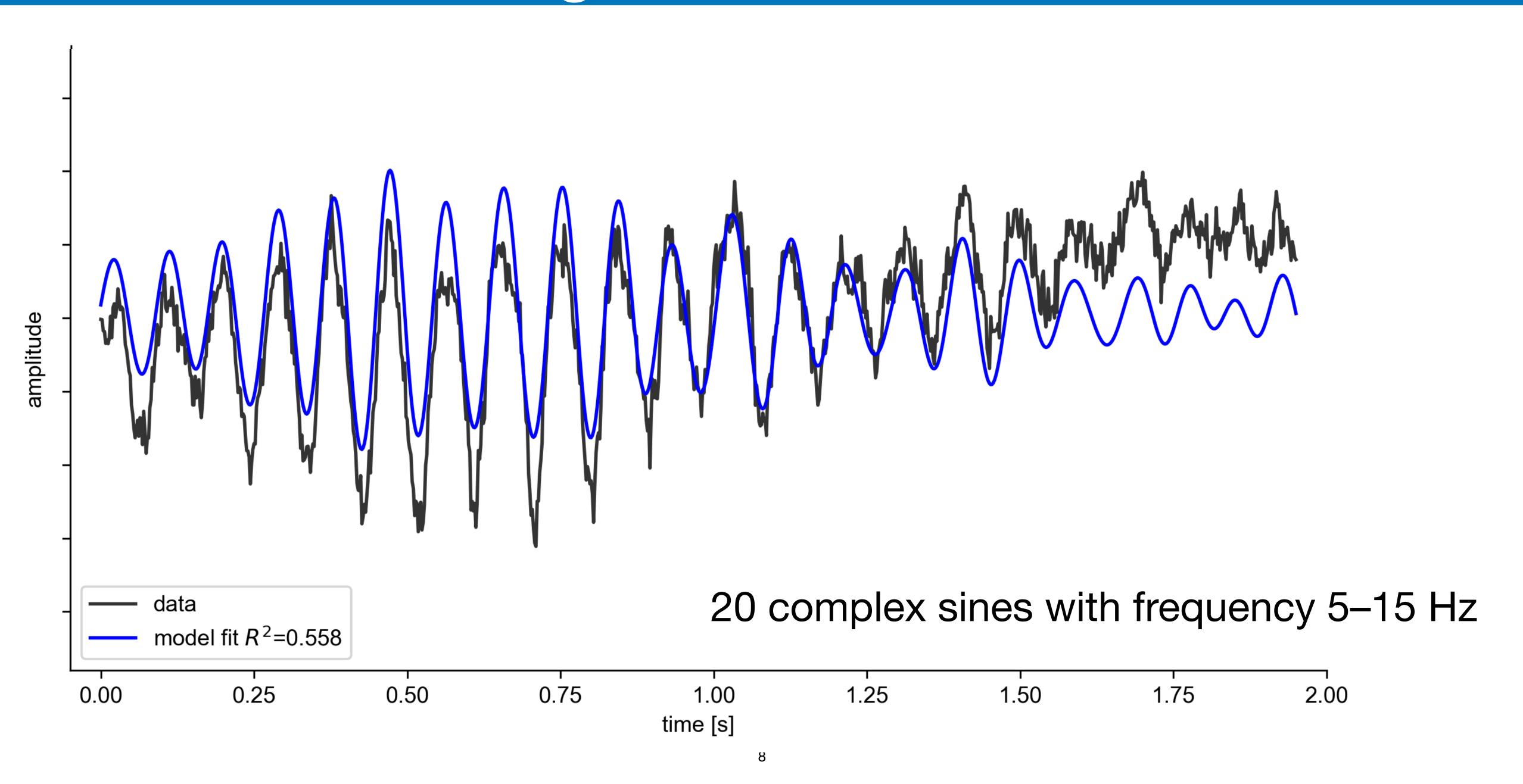
data ~ coeff_{1A} * sine₁ + coeff_{1B} * cosine₁

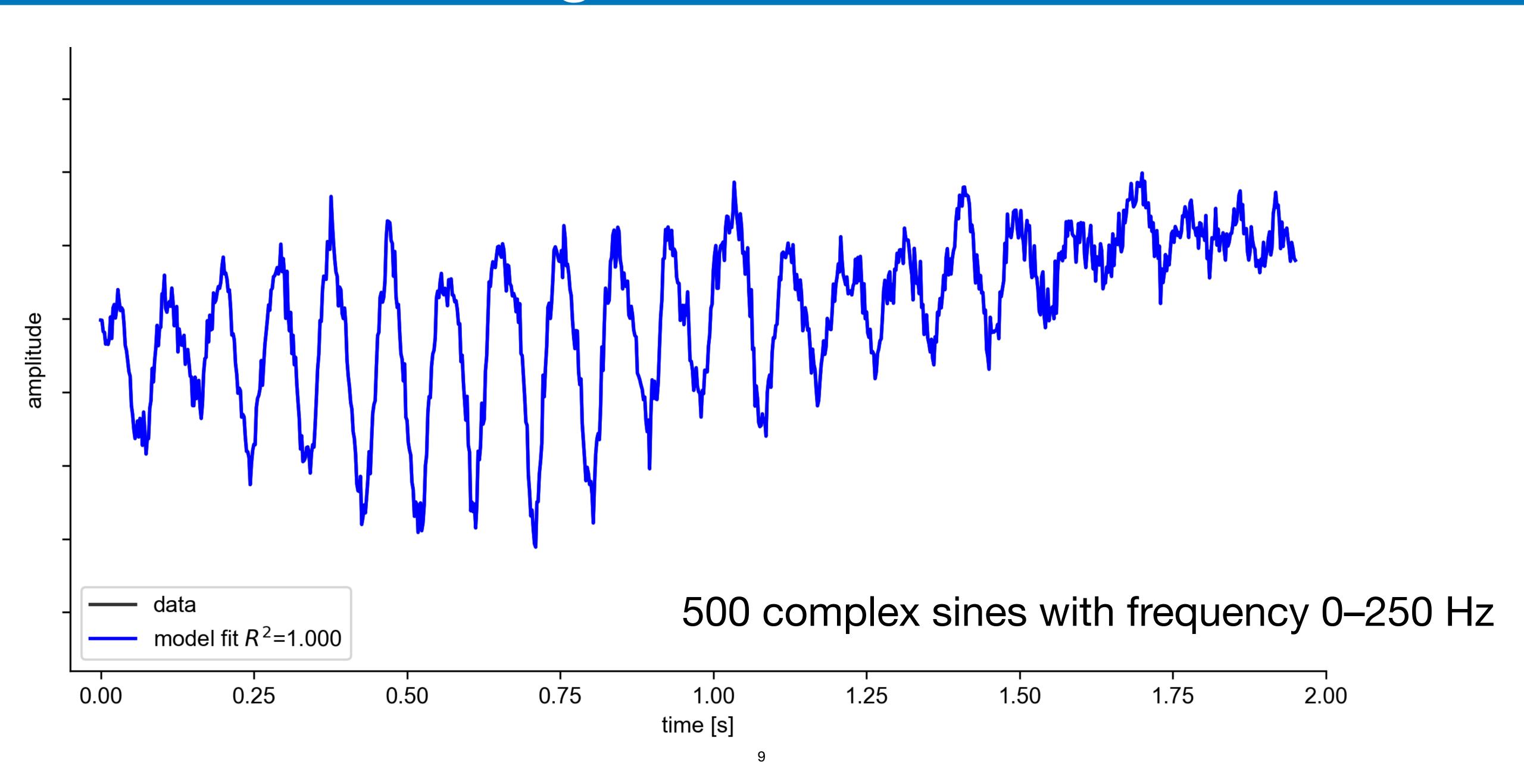


data + model fitting - more data

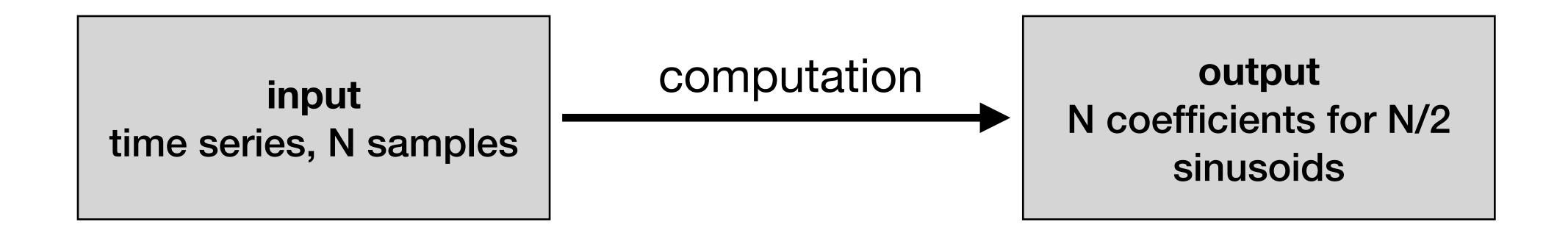


data + model fitting - more data





concepts / different views



two views on the same procedure

statistical modeling

- "multivariate linear model with complex sinusoids as regressors"
- no degrees of freedom, no remaining residual → overfitting

signal processing

- "Fourier transform", a transform into the spectral domain
- signal representation, perfect reconstruction possible

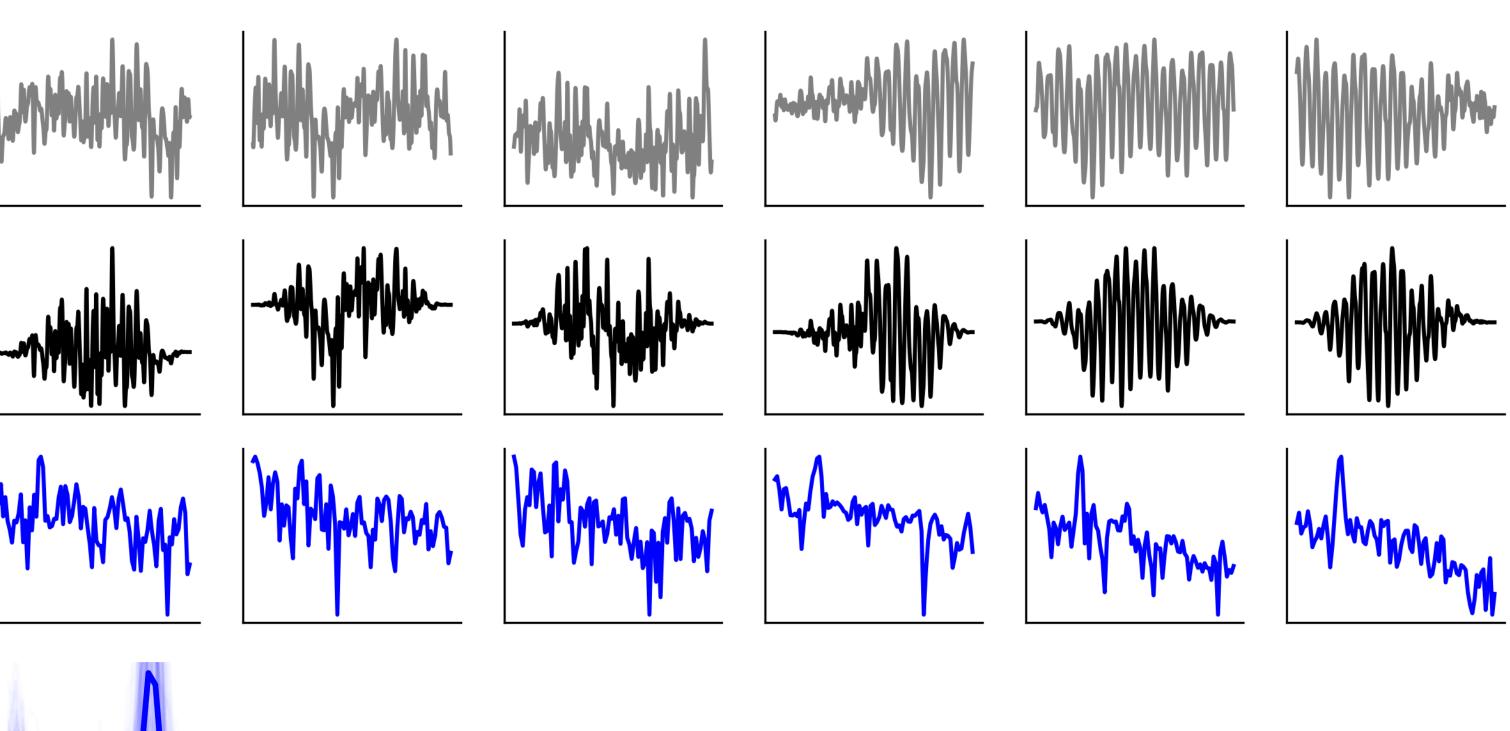
computation: Welch's method

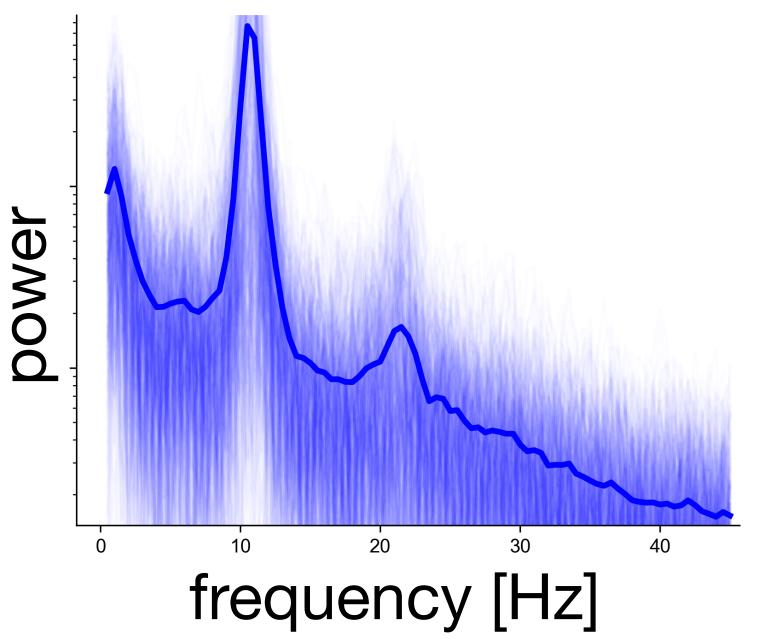
time series, cut into small segments [nr_segments x nr_samples]

time series, multiplied with a windowing function [nr_segments x nr_samples]

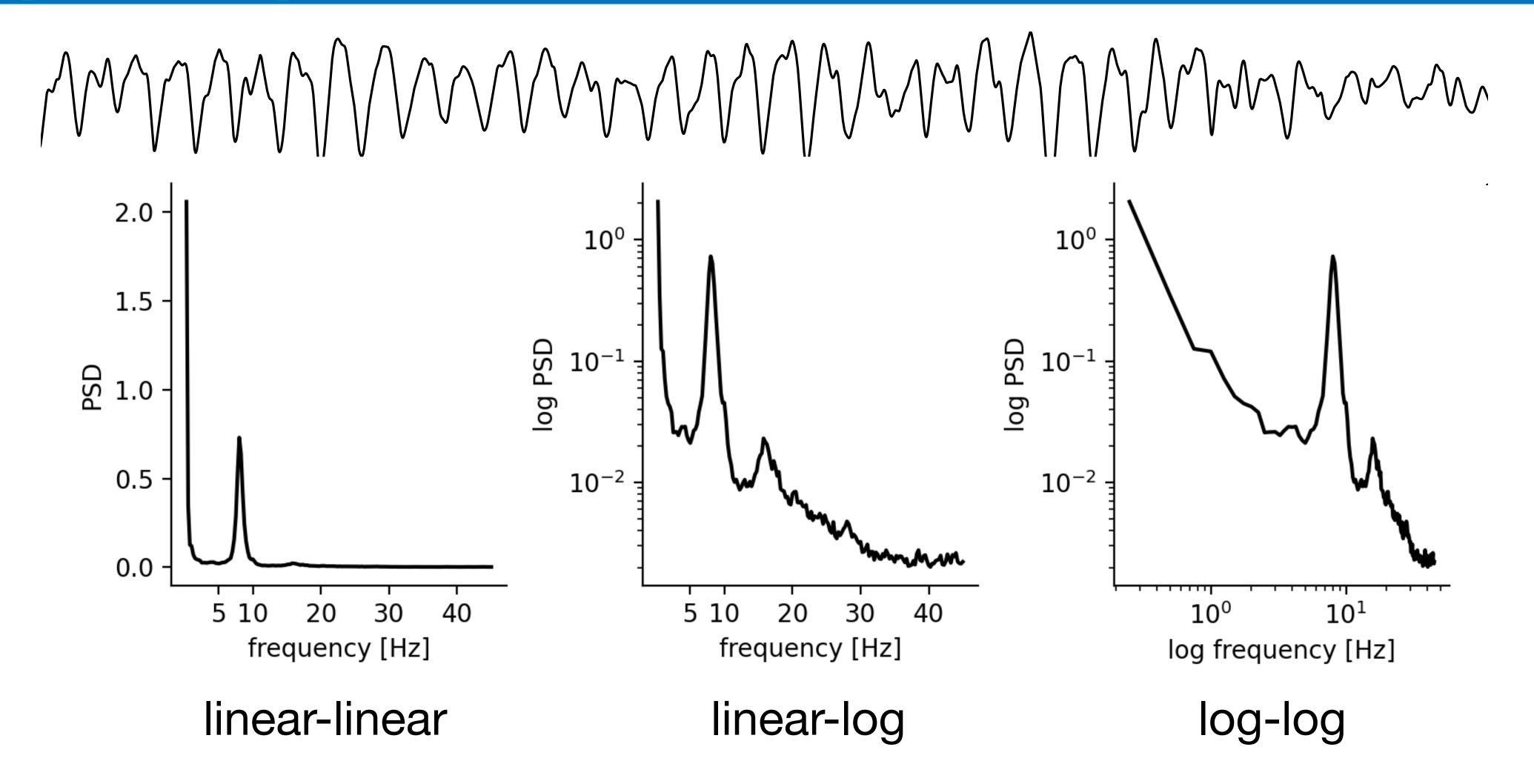
spectra for each segment [nr_segments x nr_frequencies]

average across frequencies to obtain the spectrum [1 x nr_frequencies]





example output for real EEG data



diffferent ways to show the same output of the spectral estimation

methods: parameters in general

common spectral analysis parameters

- length of data segments
- number of points per segment
- percentage of overlap
- type of taper

What are the "correct" parameters?

Choice depends on analysis goal. Different parameters enable flexibility in analysis.

if in doubt:

- starting point: take the ones from your elders / previous literature
- change parameters and observe effects,
 effects should be robust for similar parameters
 → sensitivity analysis
- simulate!

 frequency resolution of the spectrum depends on the number of used samples for each segment

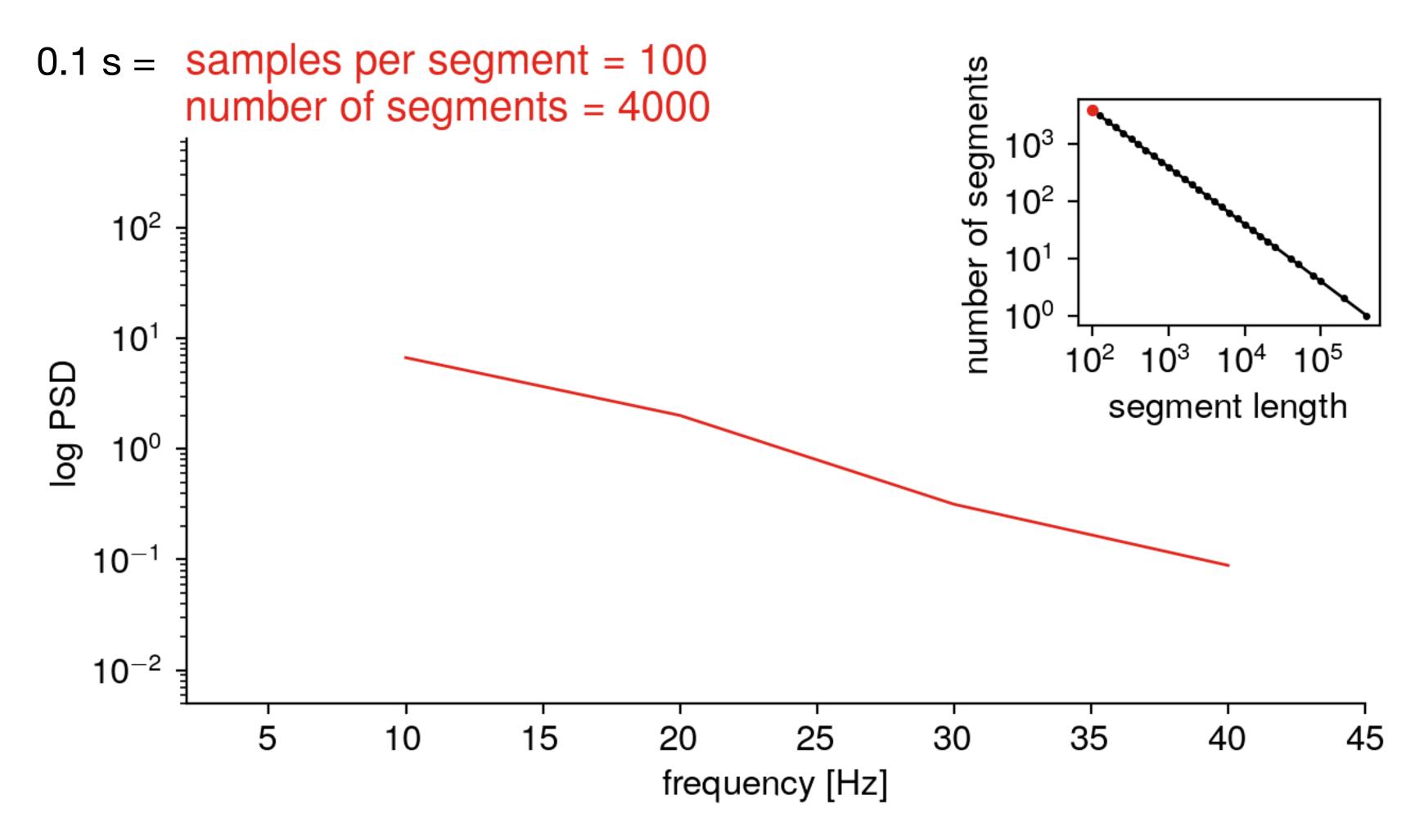
Example

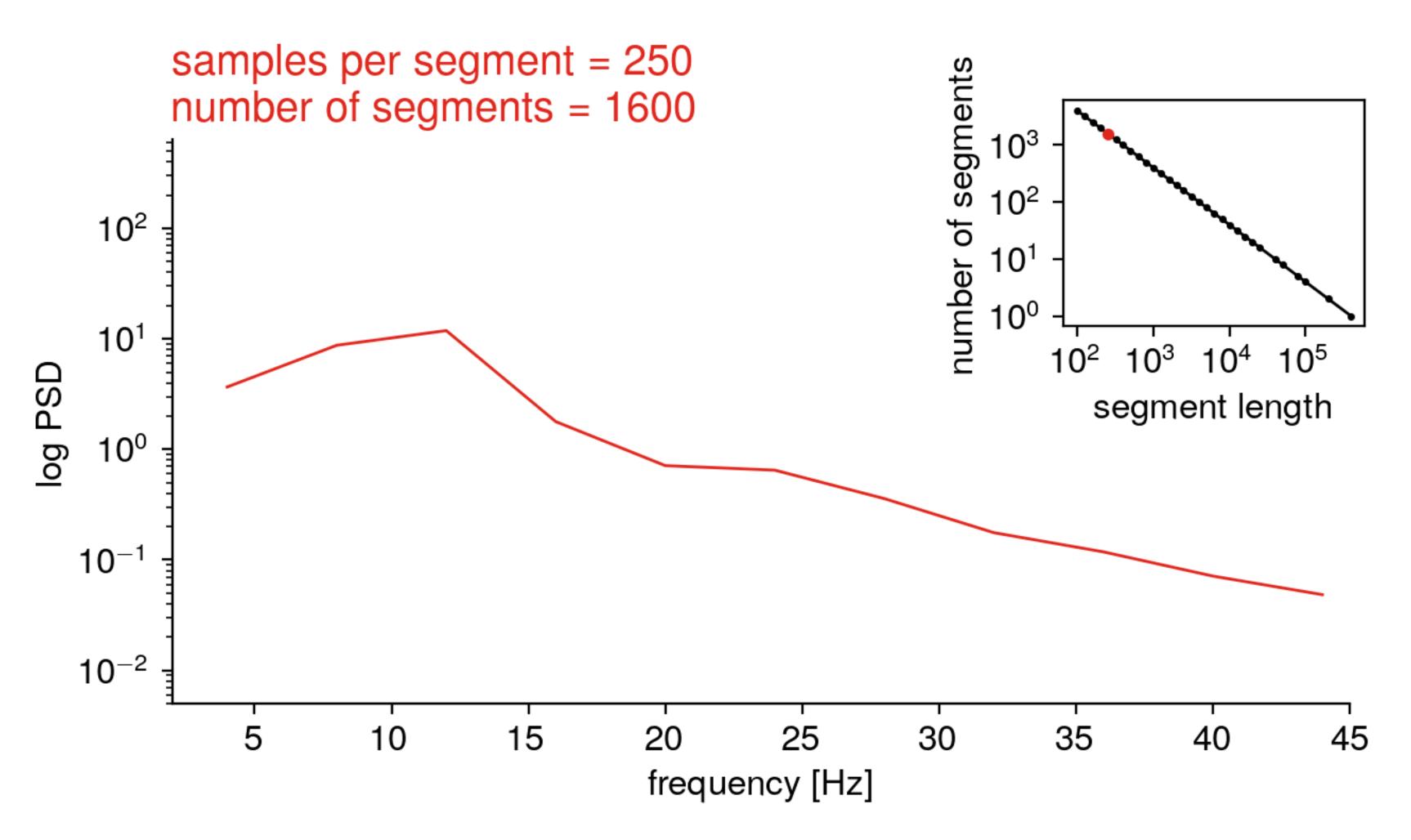
frequency resolution

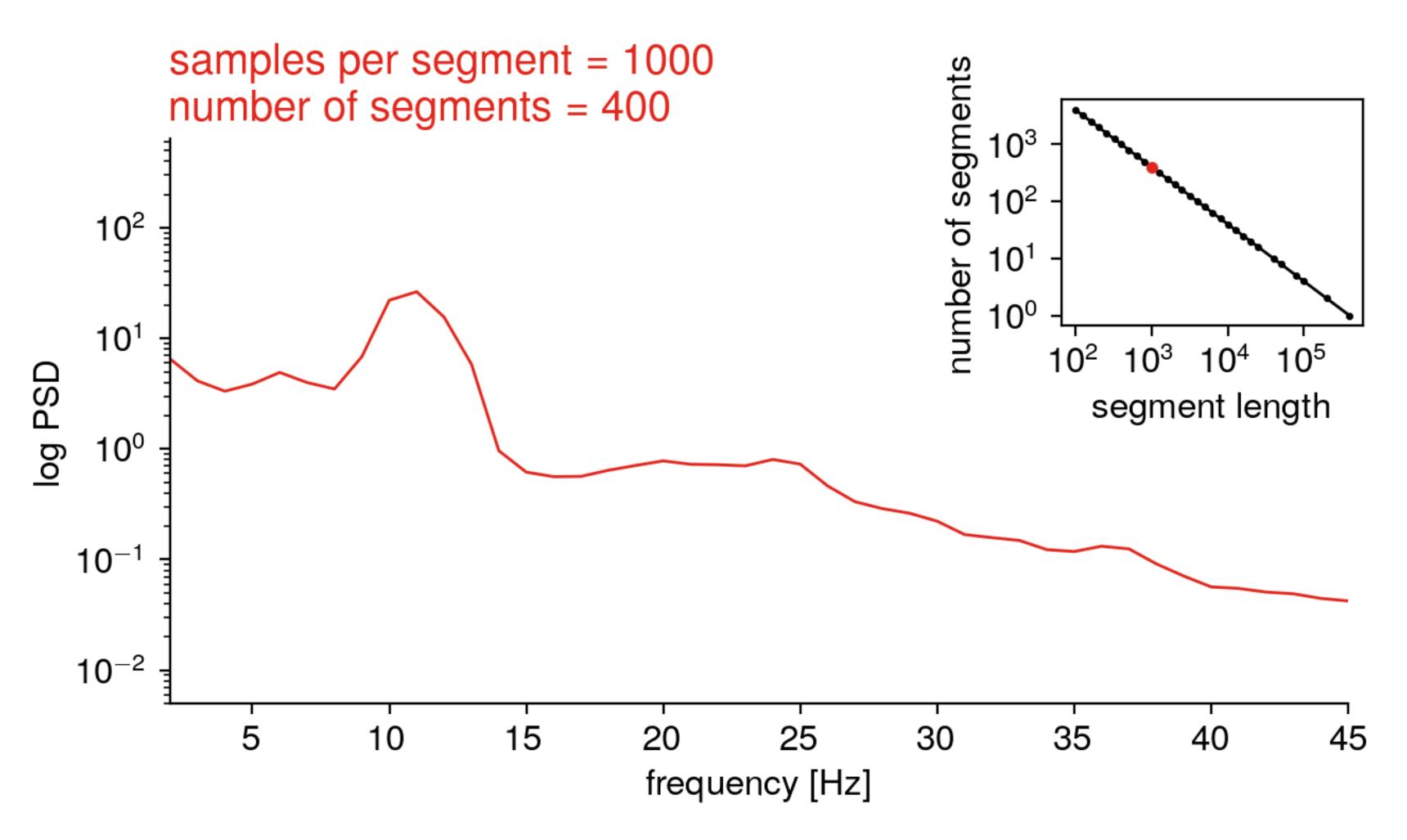
• segment length: $1s \rightarrow 1$ 2 3 4 ... Hz

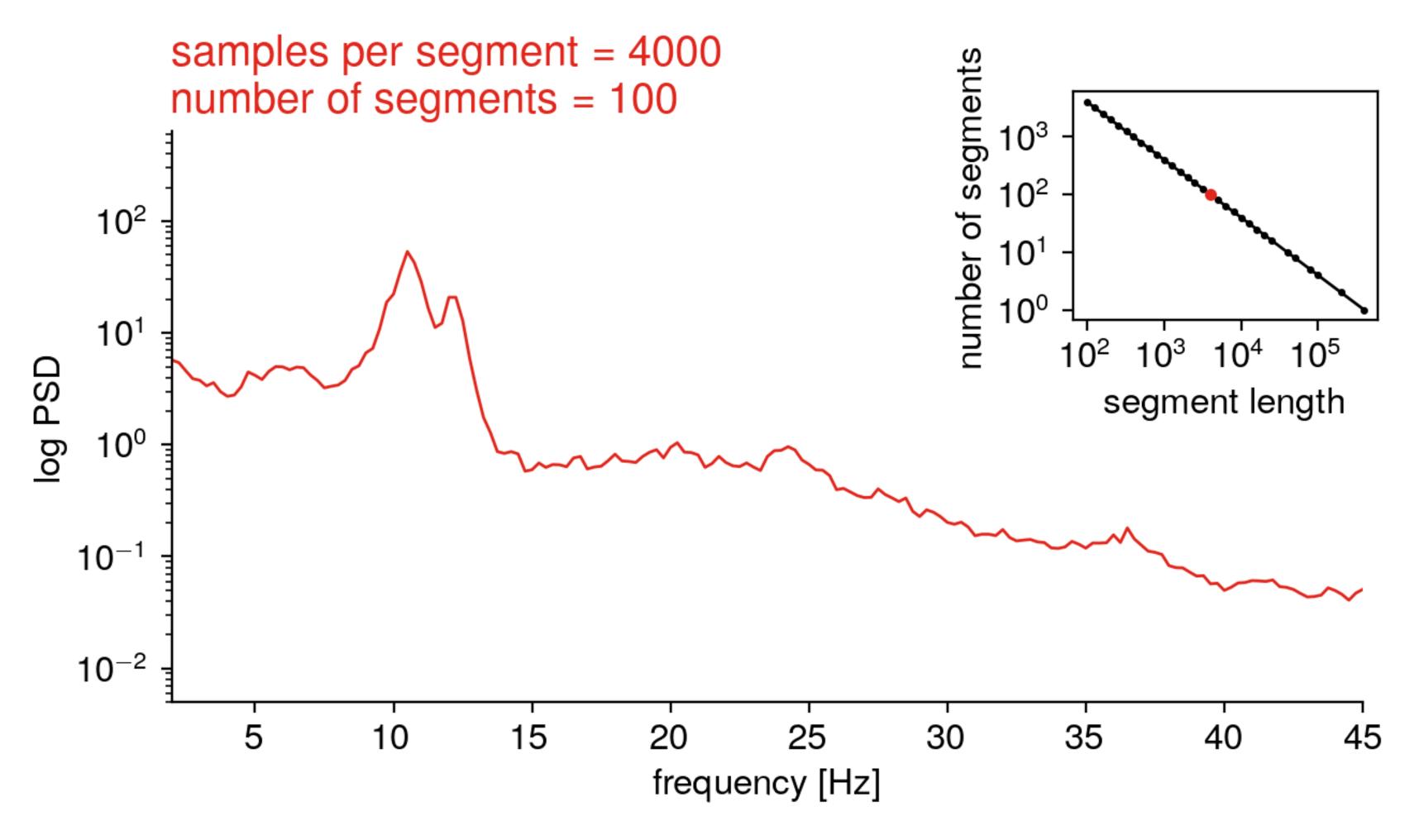
• segment length: $2s \rightarrow 0.5$ 1.5 $2 \dots Hz$

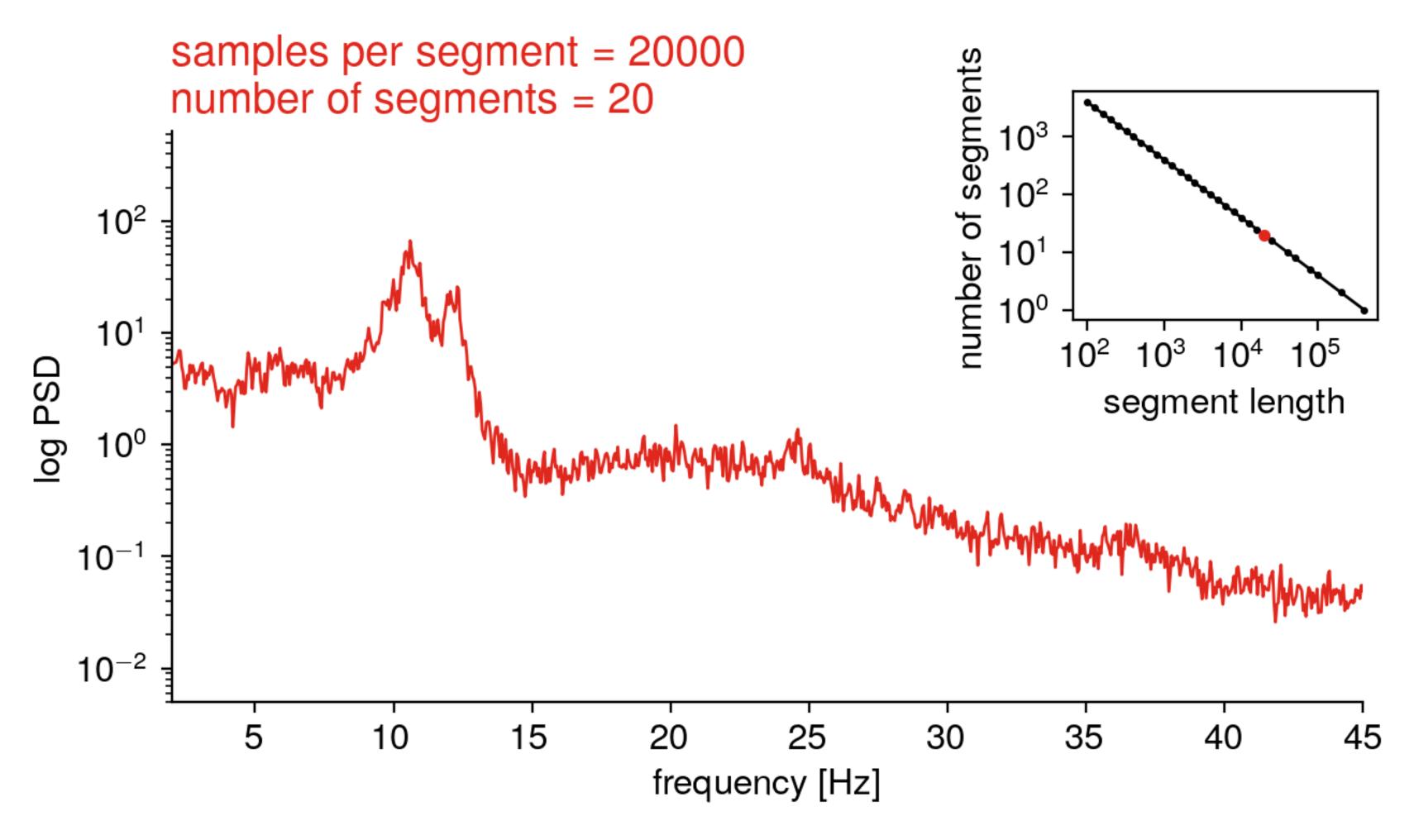
• segment length: $0.1s \rightarrow 10$ 20 30 40 ... Hz

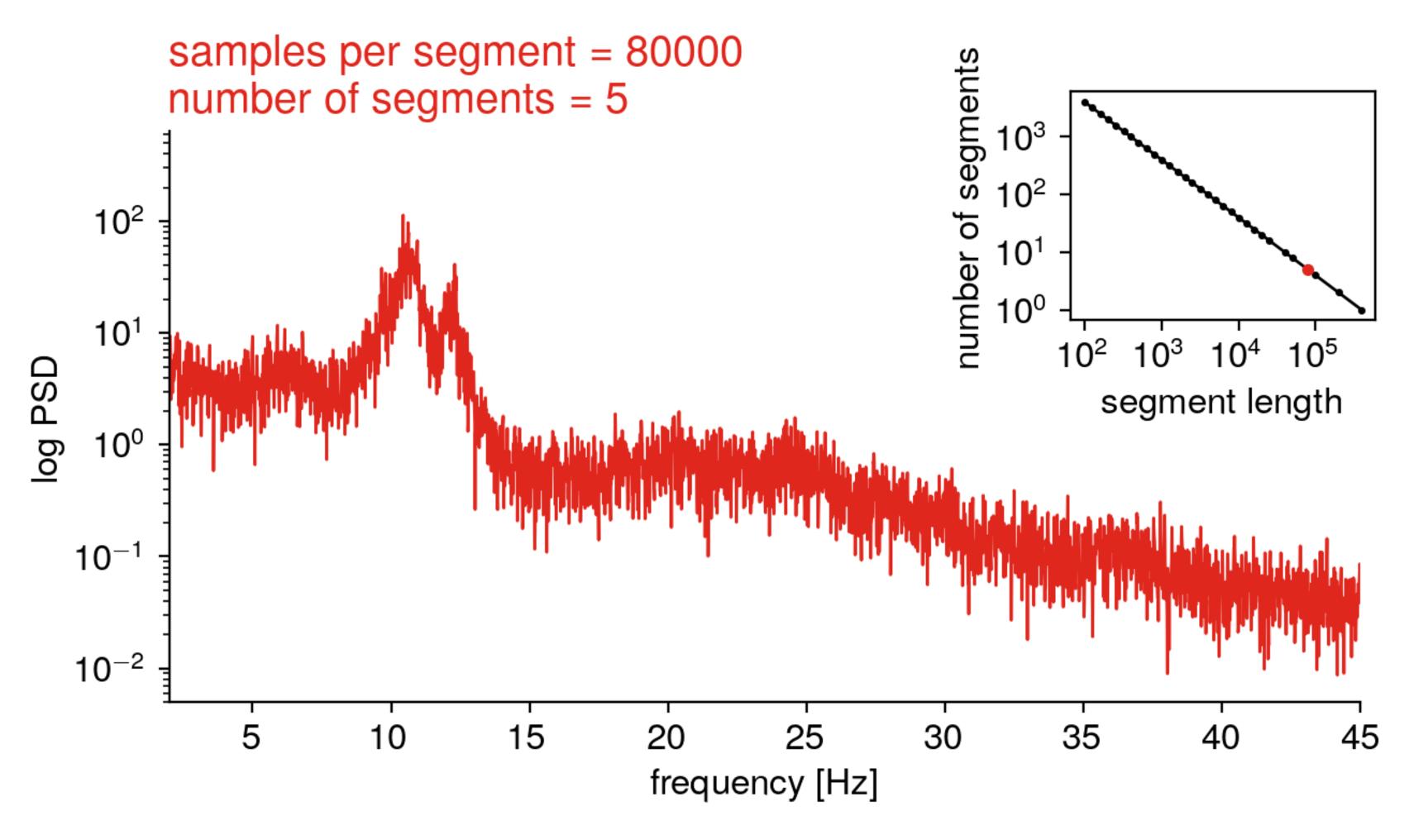


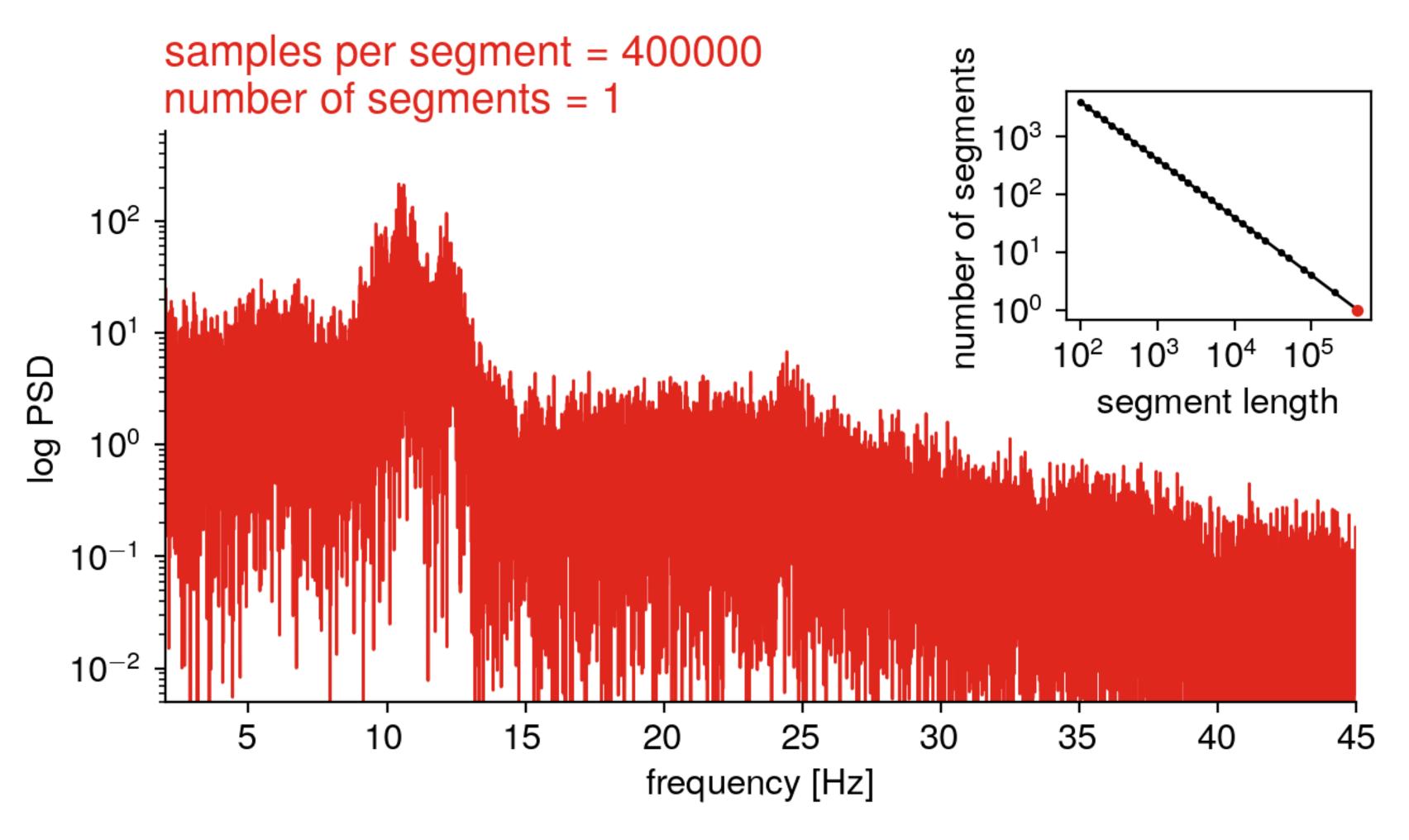


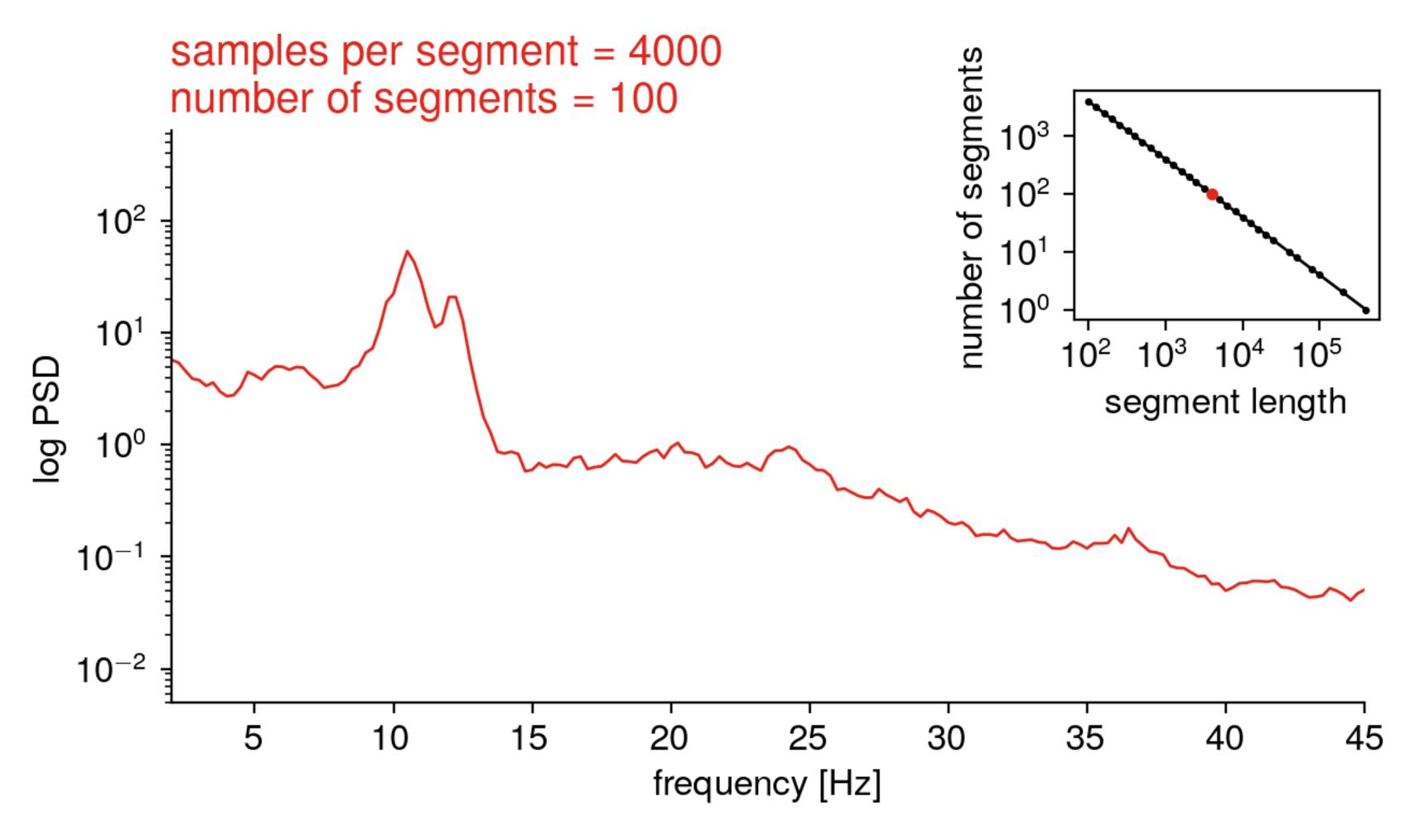




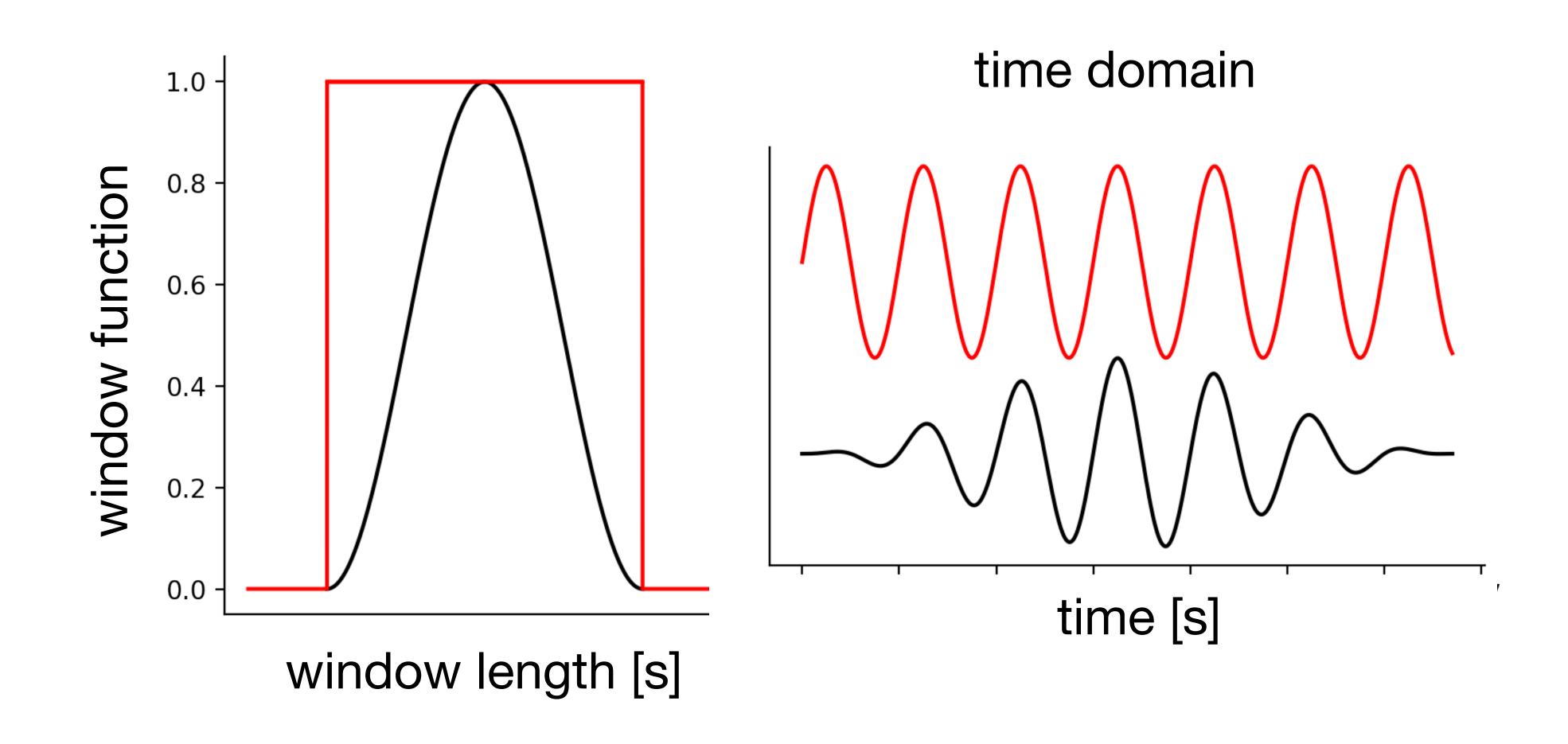




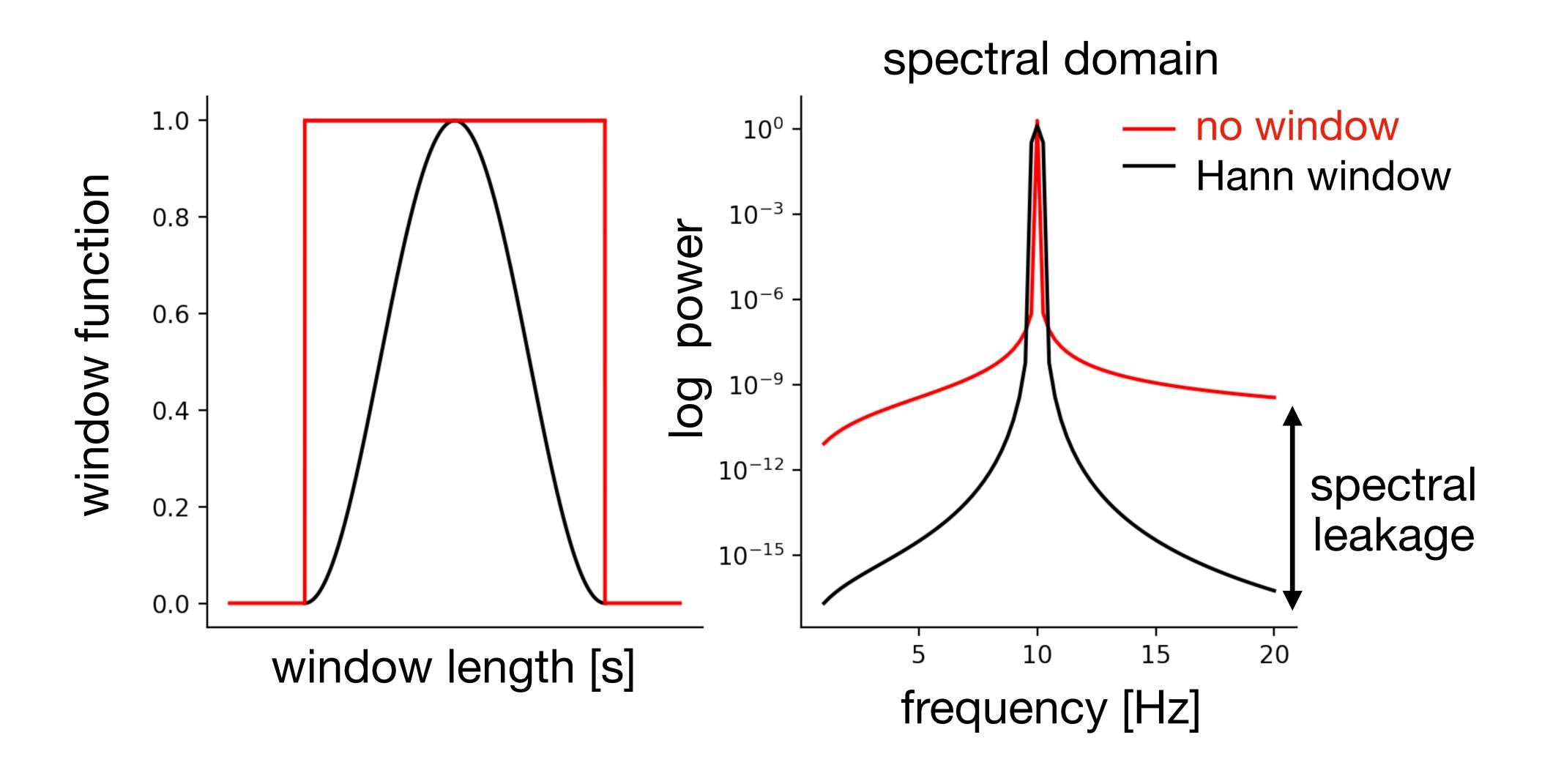




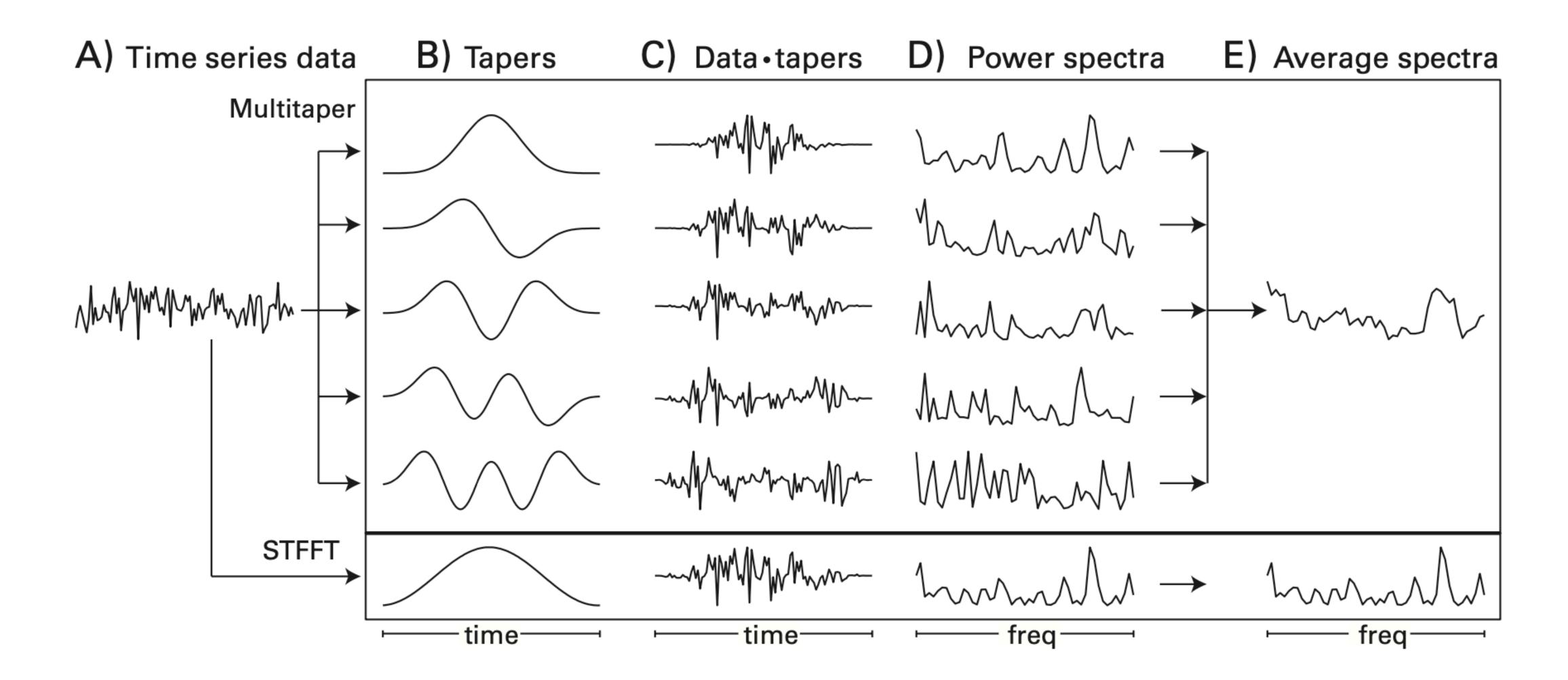
methods: taper / window function



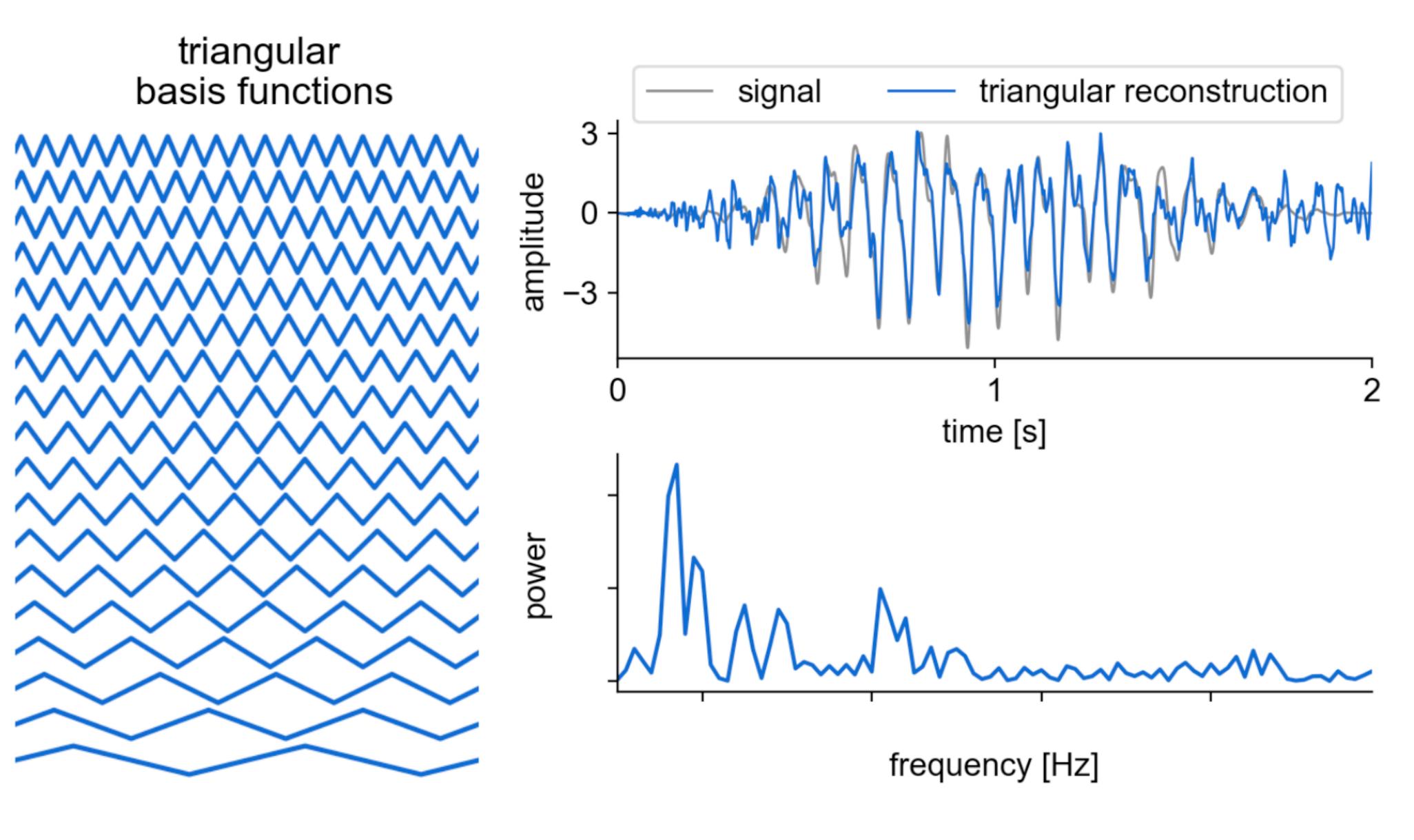
methods: taper / window function



methods: multitaper, goal: increase SNR



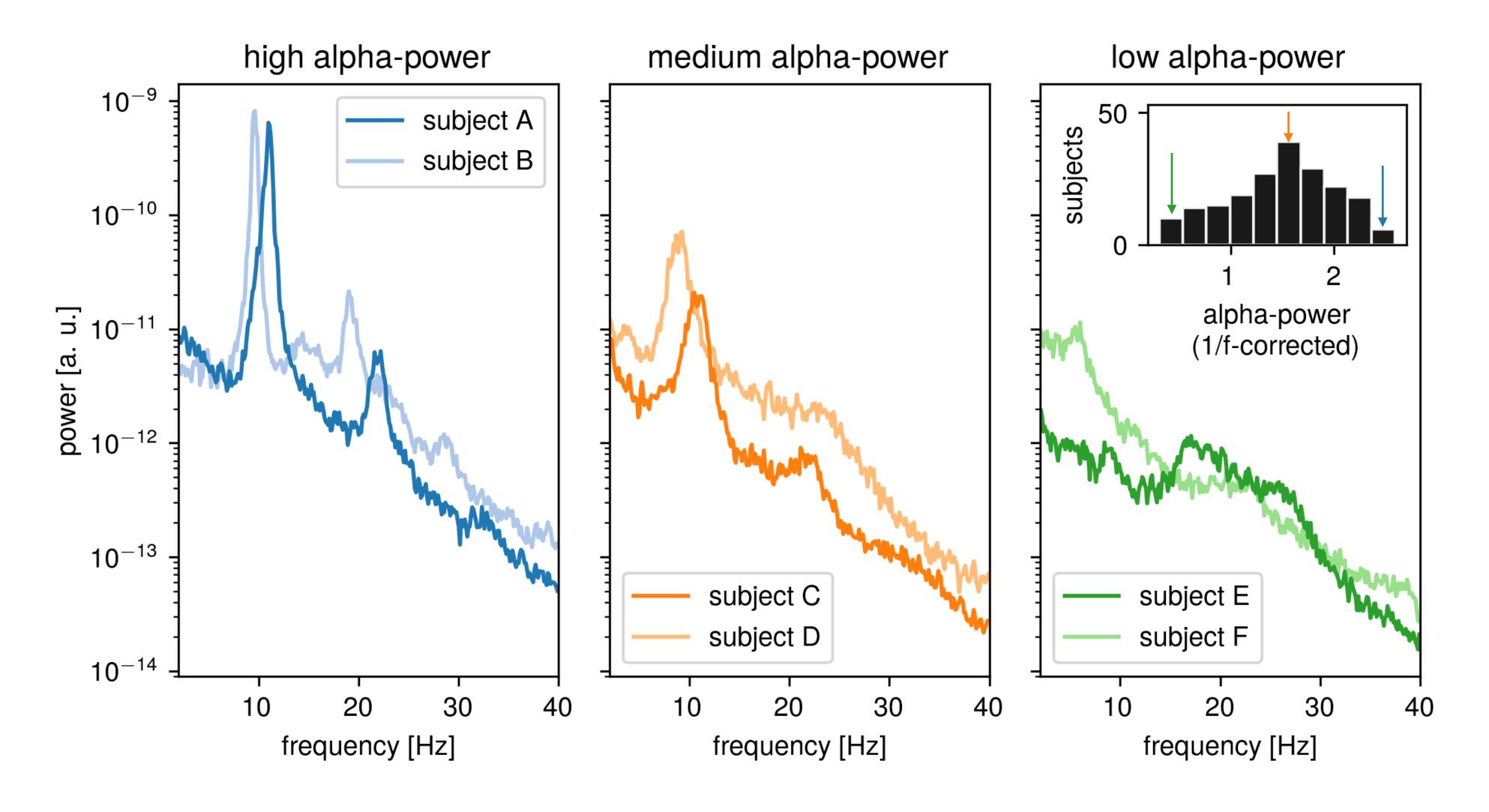
other functions as factors?



spectral
analysis does
not explain
neurophysiological
generative
mechanisms

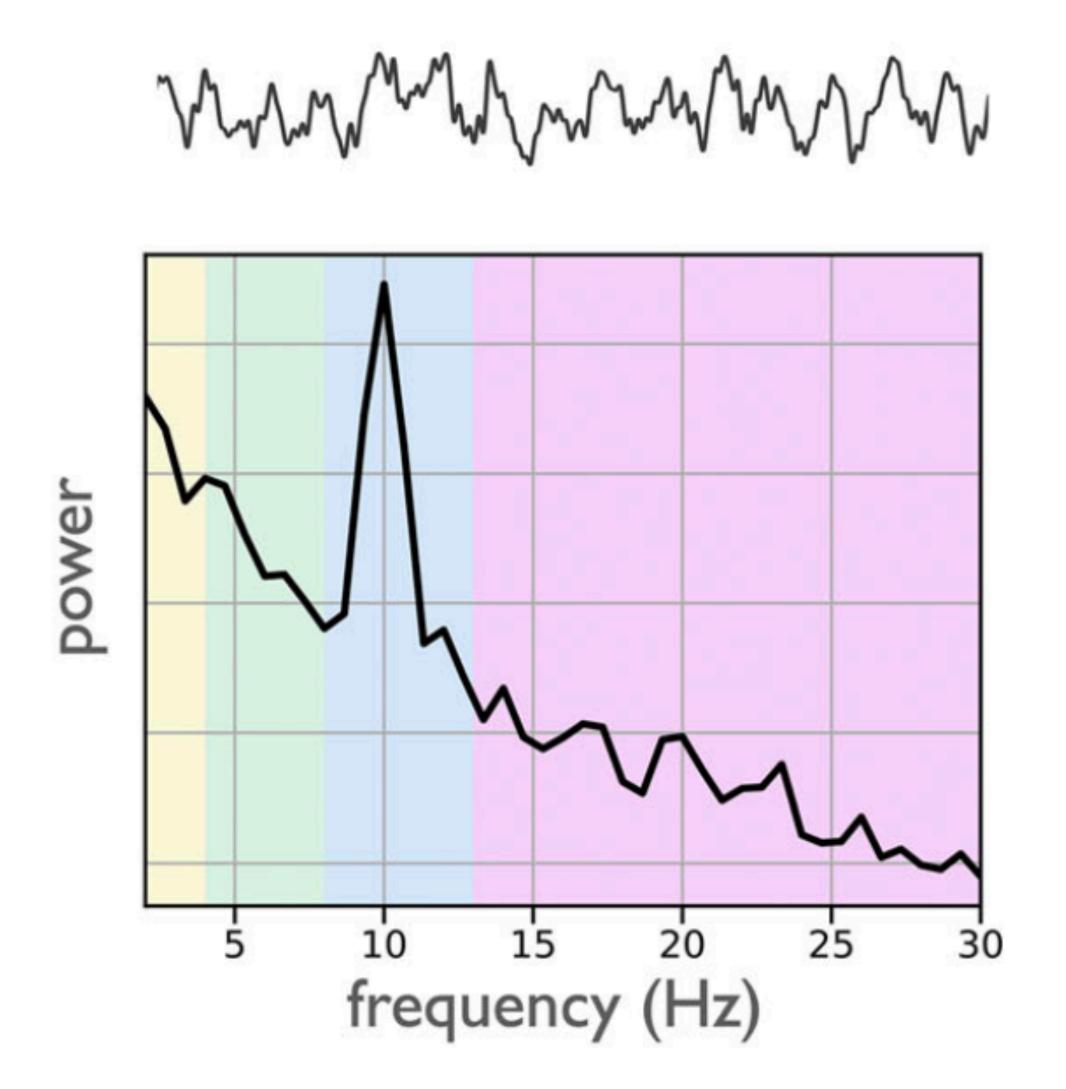
spectral analysis interpretation

variability & oscillation power, example: EEG



Oscillations are variable across participants.

measure: oscillation frequency & power

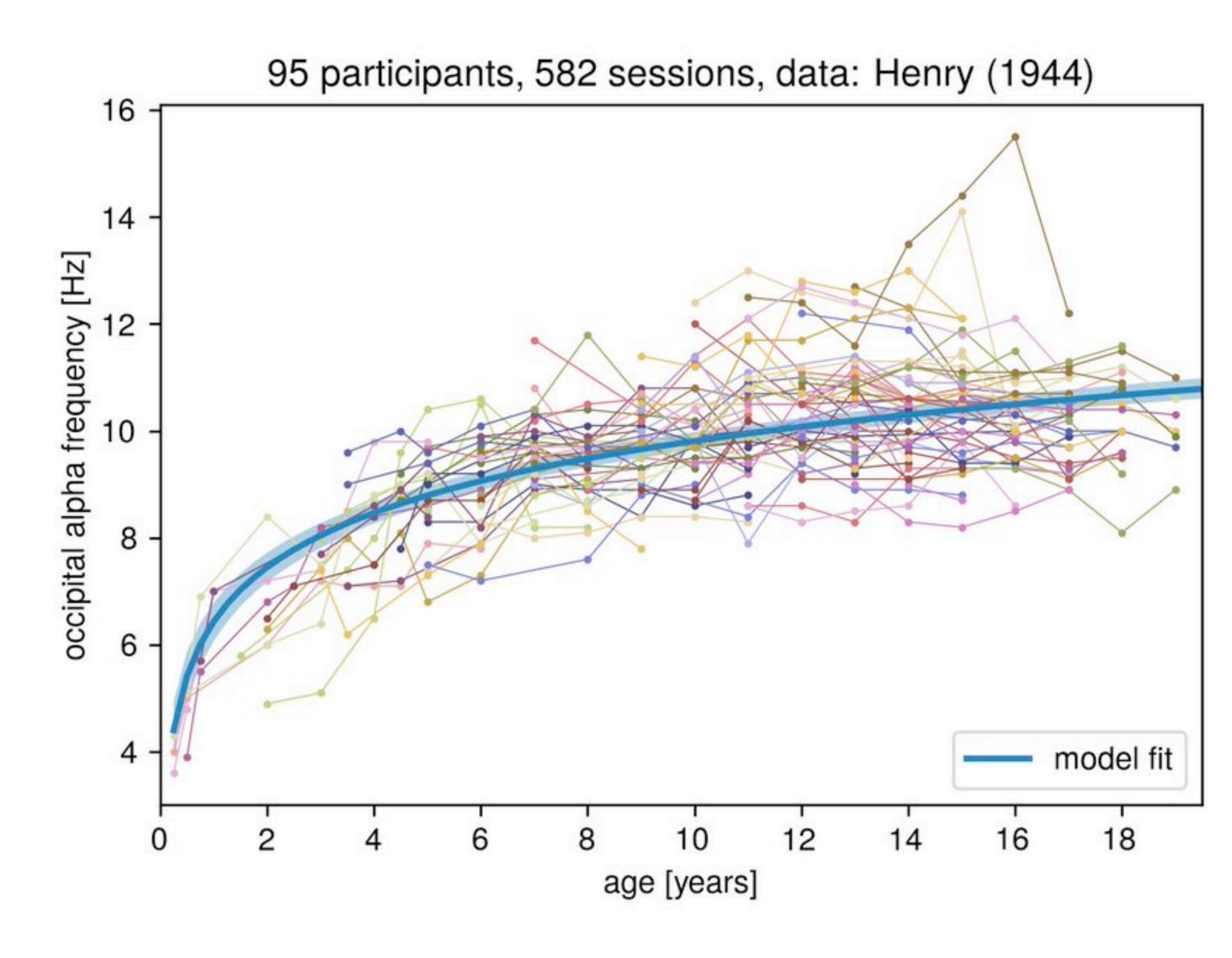


Frequency (Hz)	IFCN-2017 Glossary
Delta	0.1-<4
Theta	4-<8
Alpha	8–13
Beta	14-30

measure: "alpha-frequency"

pitfalls: frequency changes across frequency boundaries

- observation:
 oscillation frequency
 changes drastically
 over the course of
 development
- here posterior dominant rhythm, human EEG



pitfalls: frequency changes across frequency boundaries

- observation:
 oscillation frequency
 changes drastically
 over the course of
 development
- here posterior dominant rhythm, human EEG

measure: "thetafrequency"

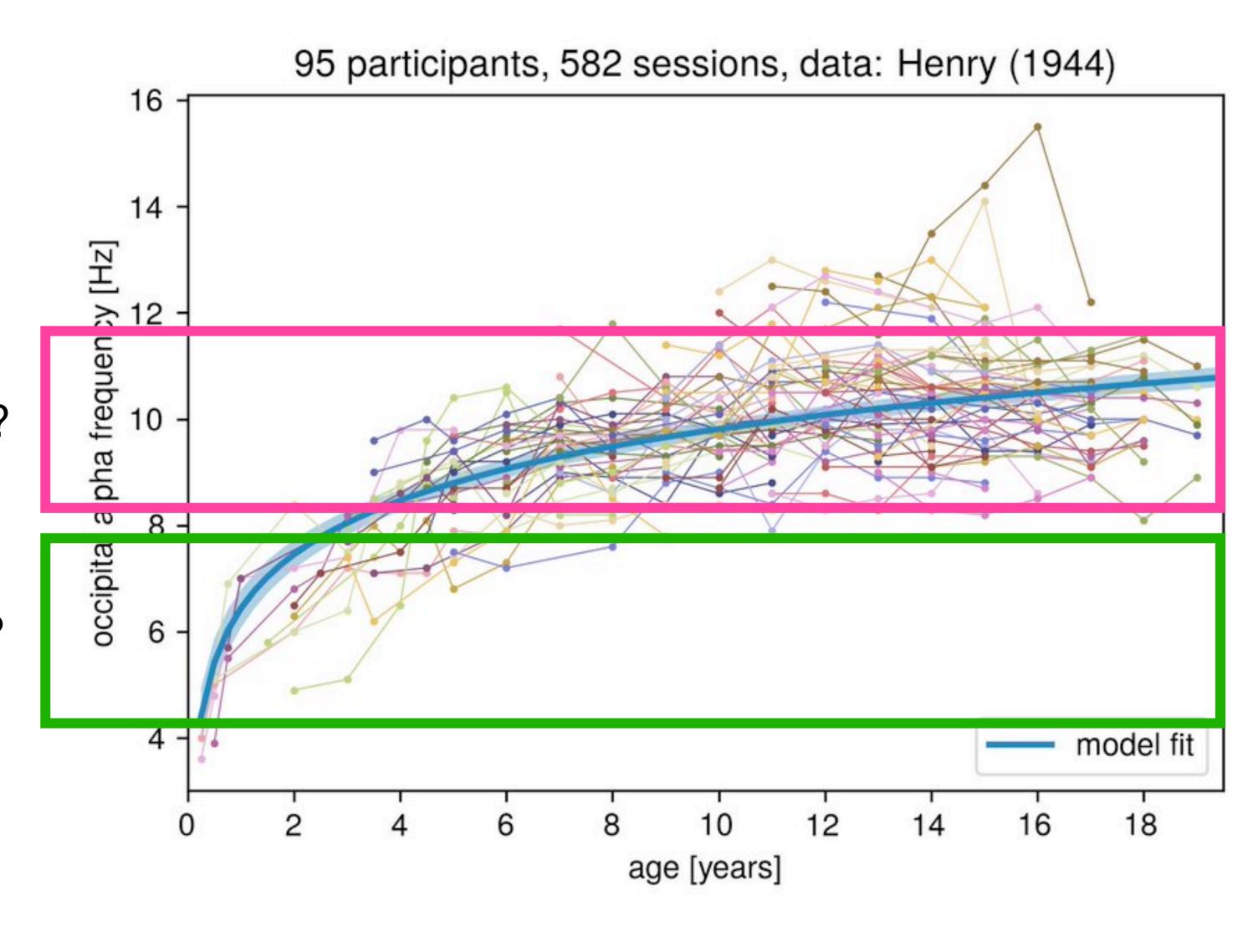
measure: "alphafrequency"

posterior

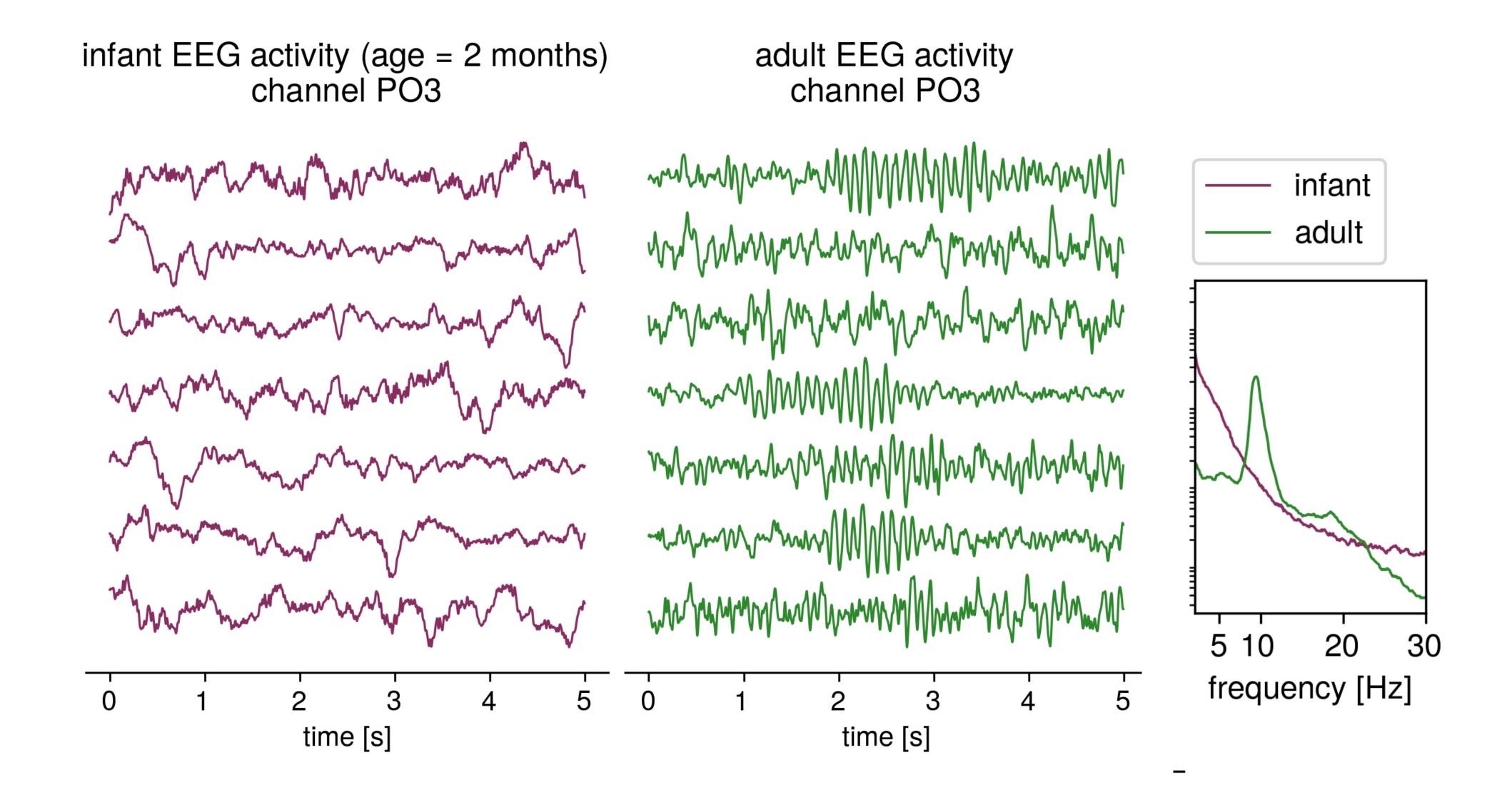
rhy

dominant

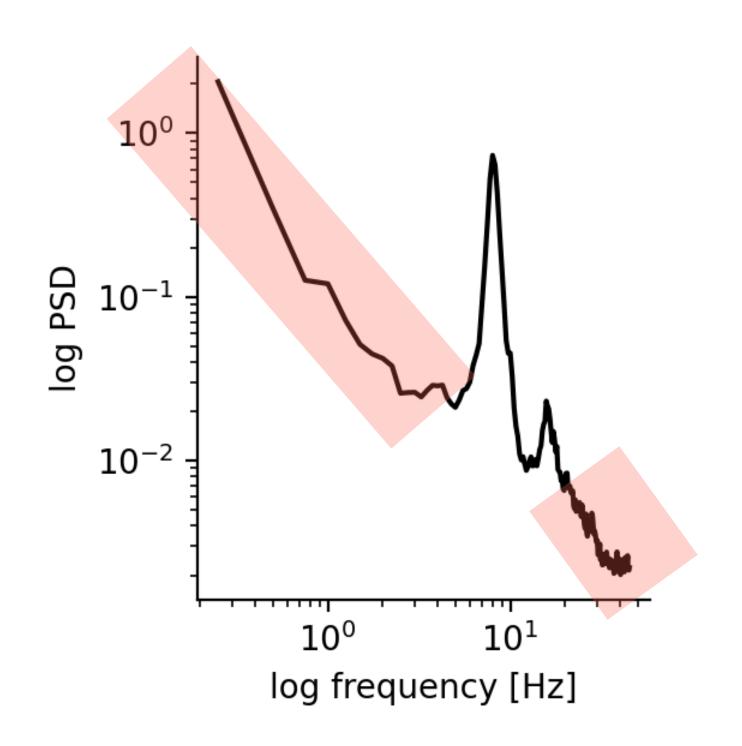
thm



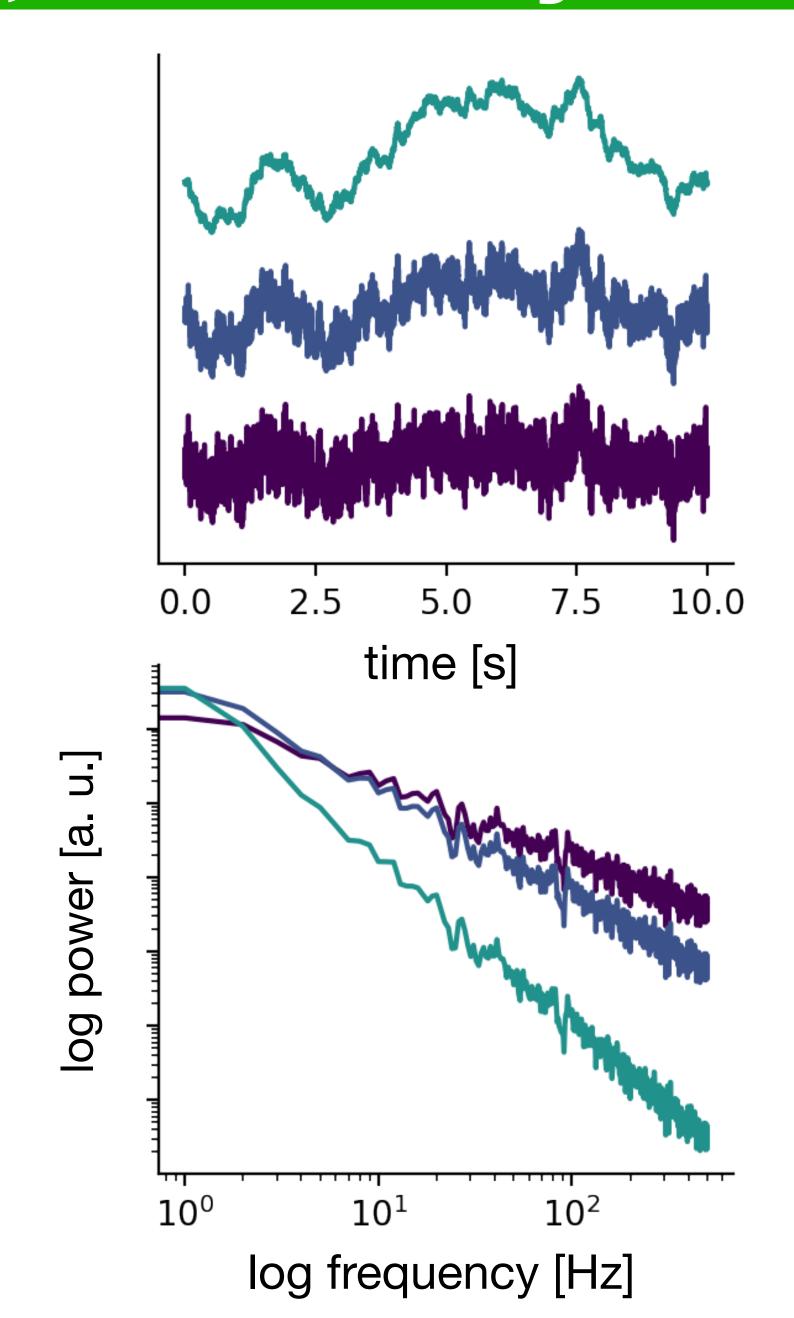
non-rhythmic contributions, 1/f-activity



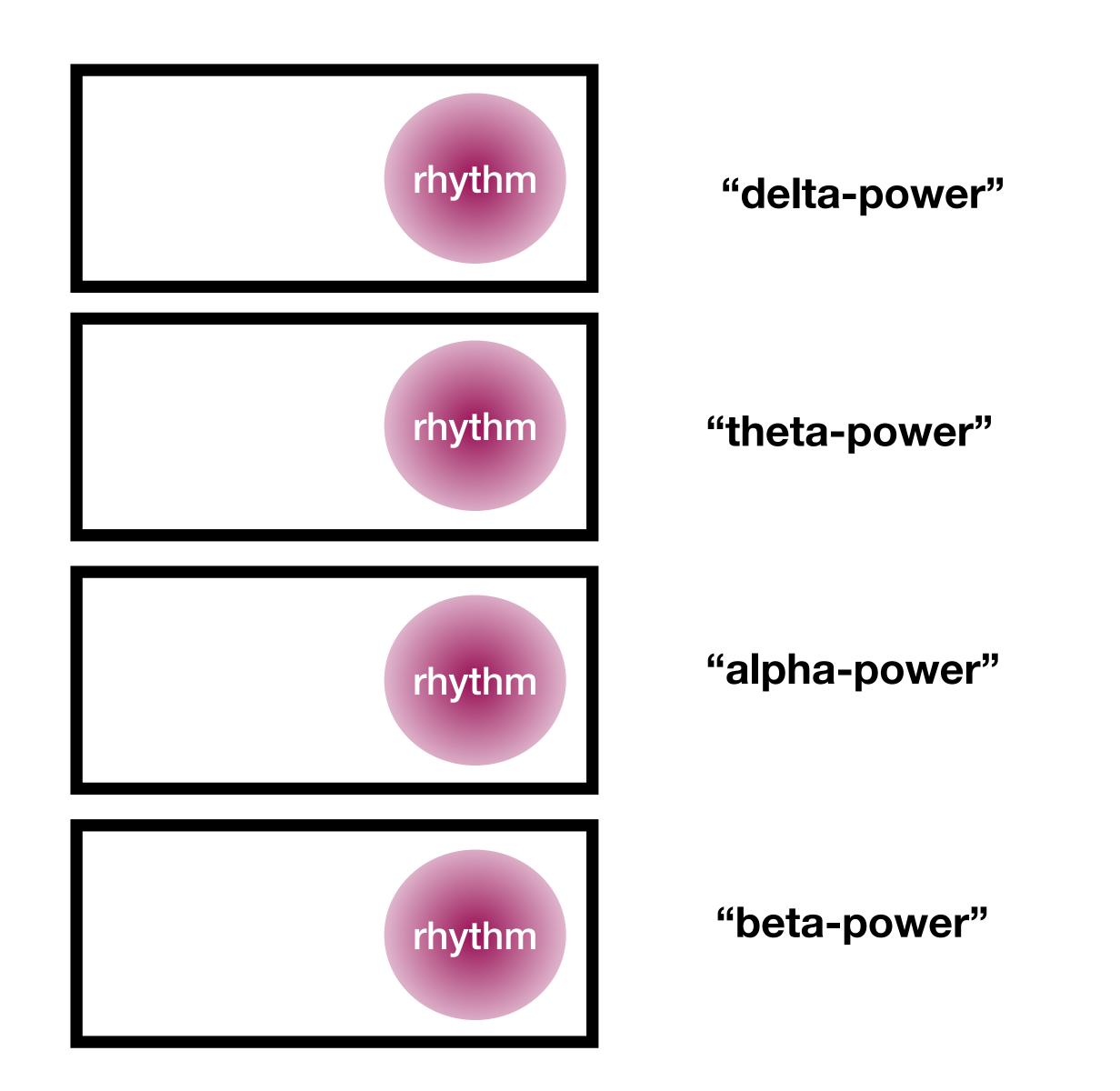
non-rhythmic contributions, 1/f-activity



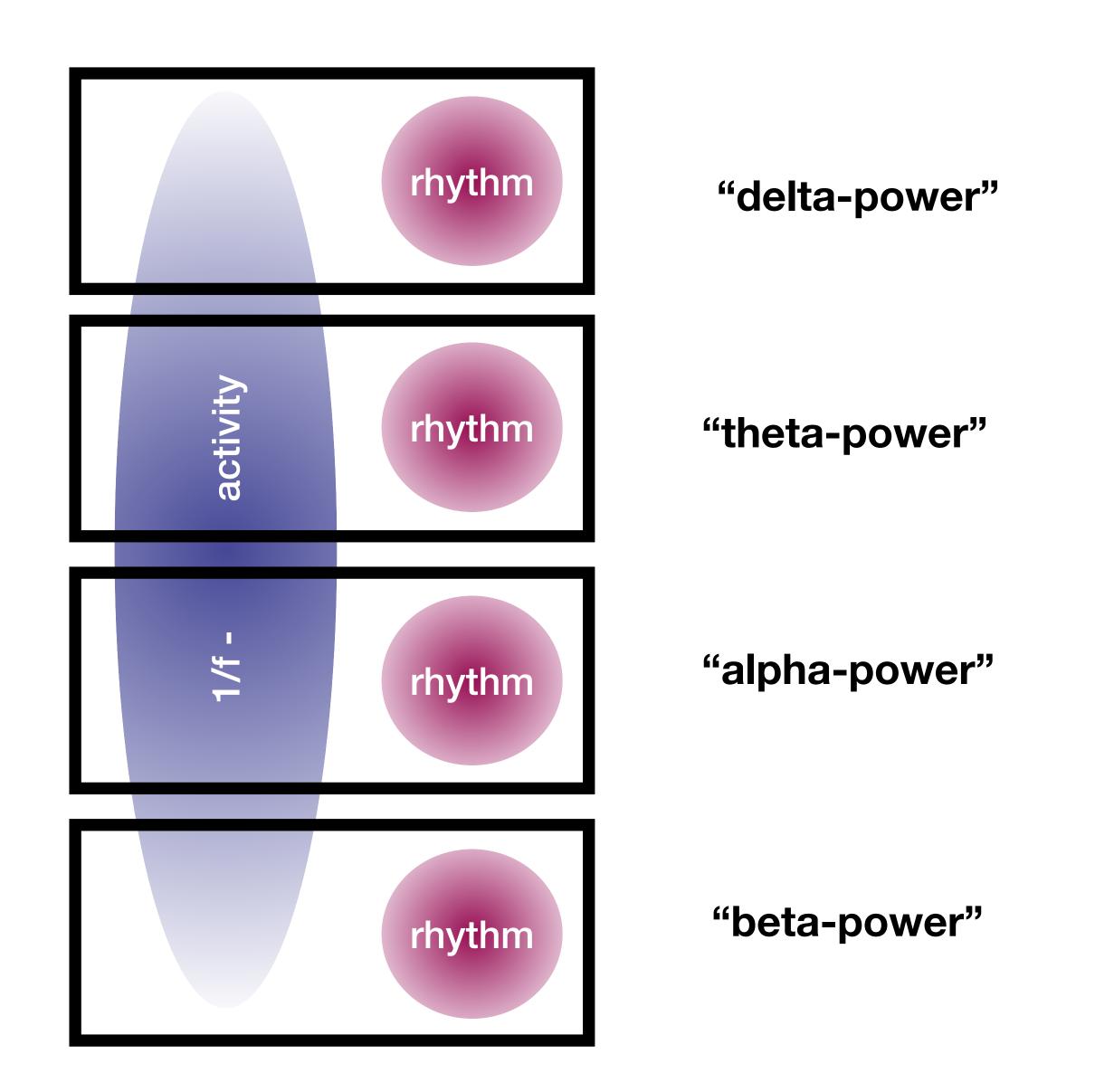
1/f-activity:
 power scales with frequency
 scale free dynamics



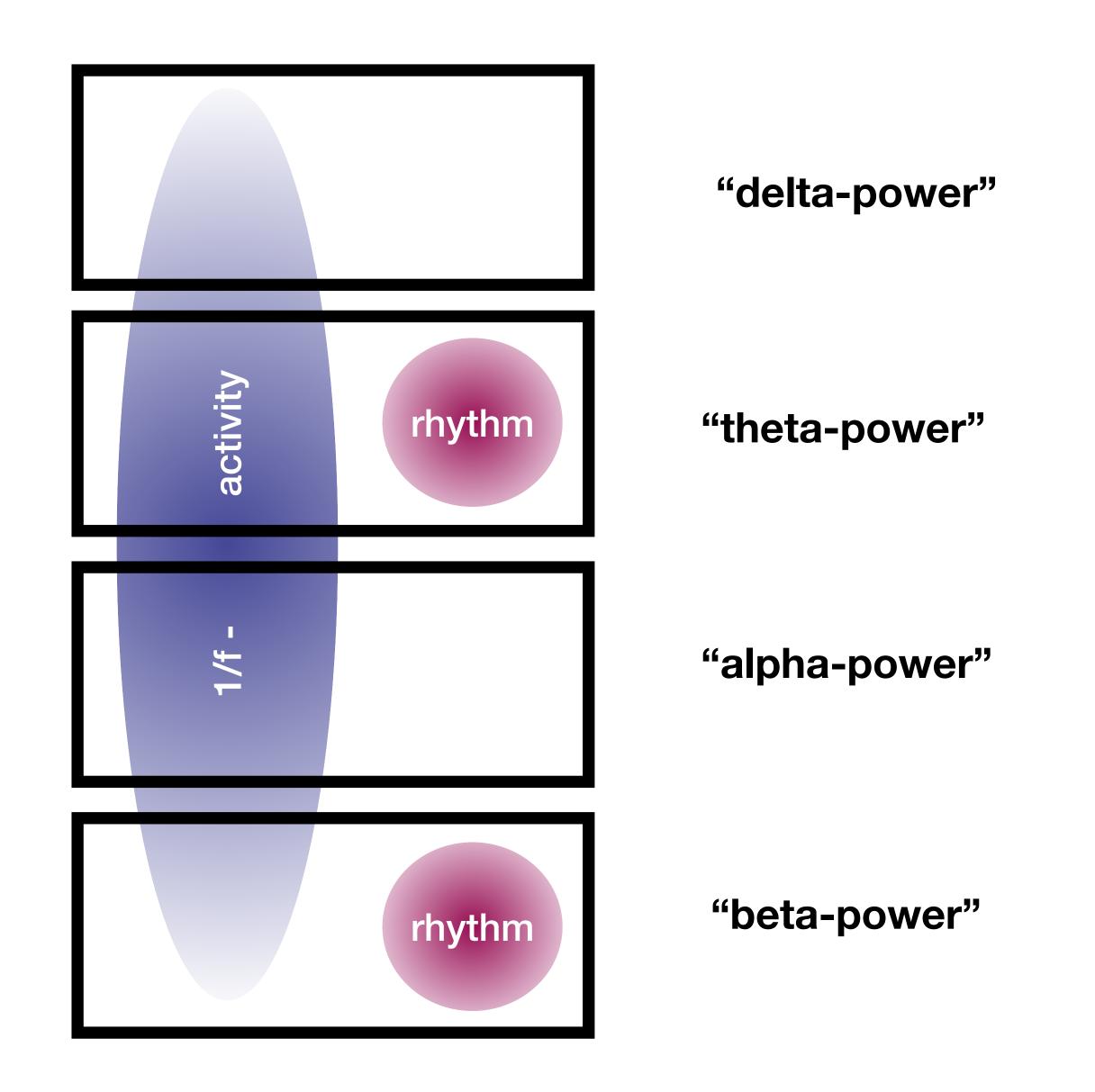
pitfalls: not only rhythmic changes + rhythms can be absent



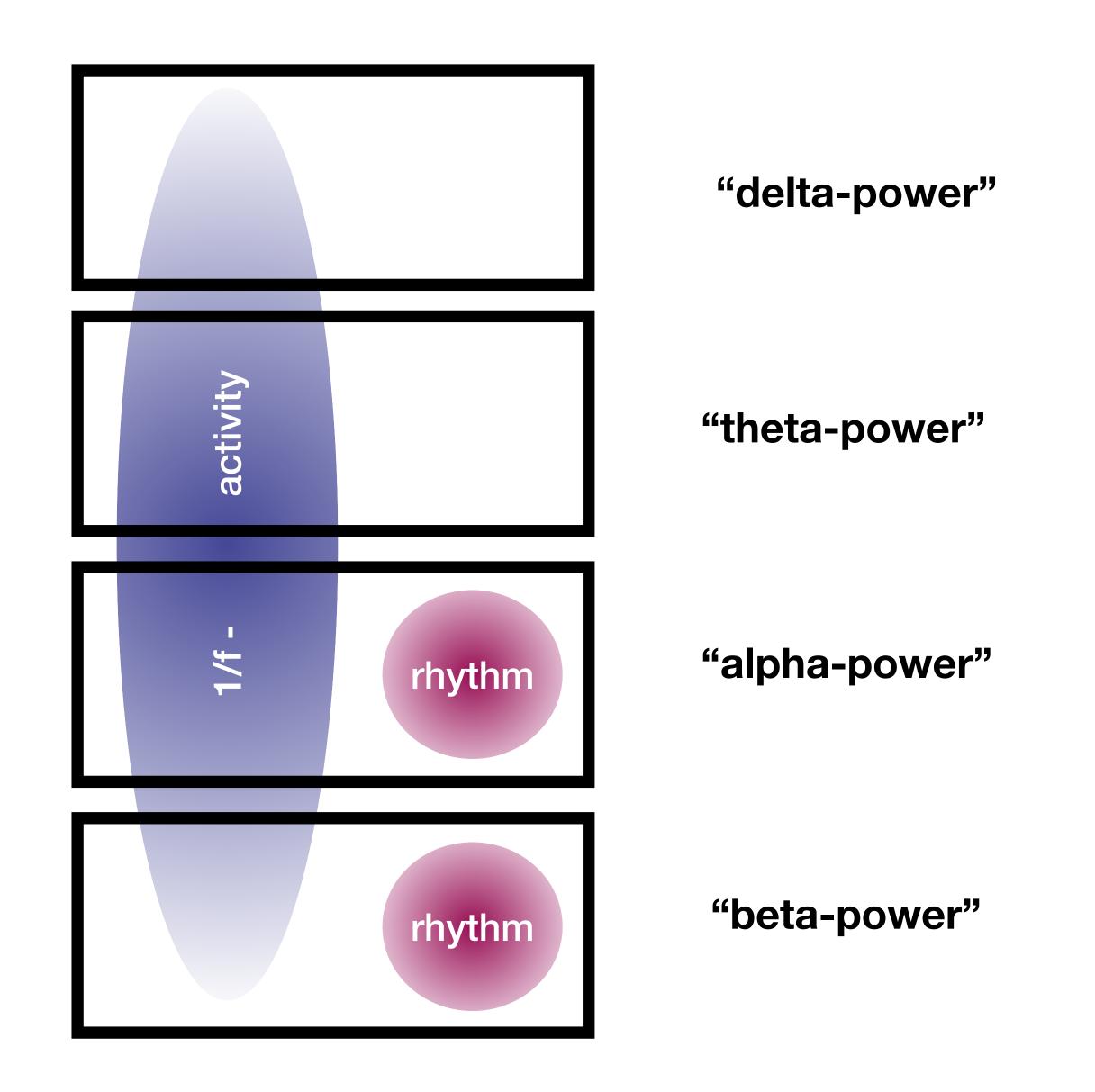
pitfalls: not only rhythmic changes + rhythms can be absent



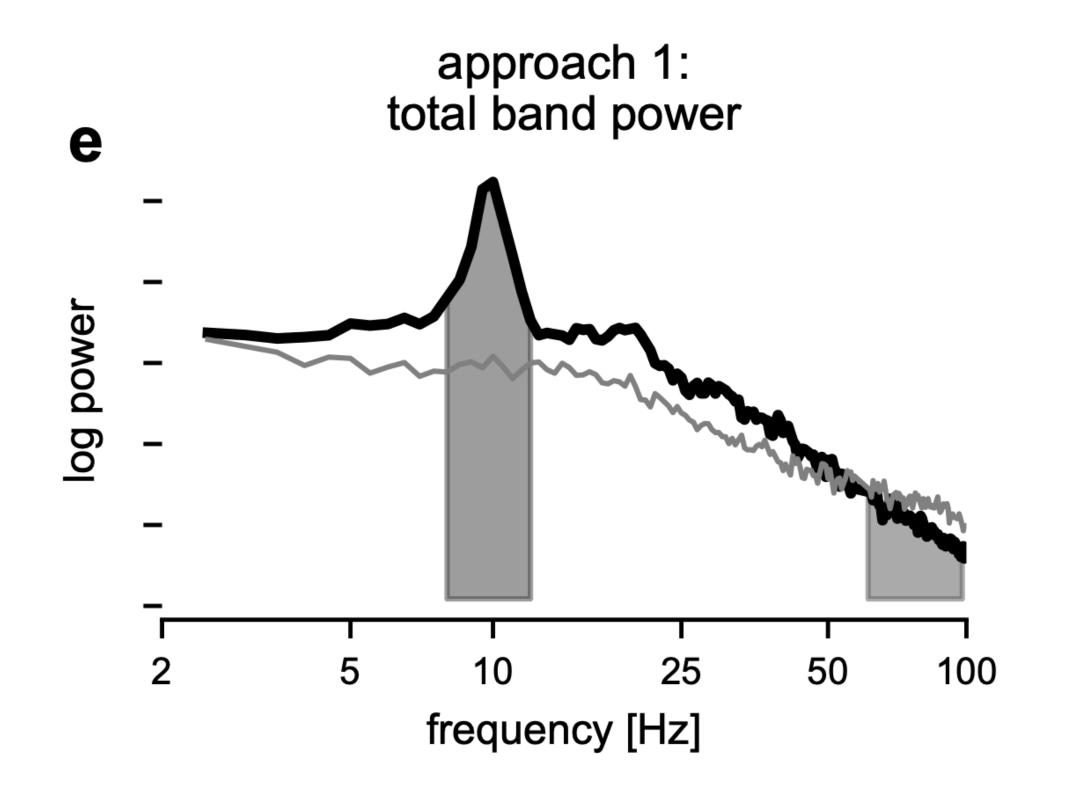
pitfalls: not only rhythmic changes + rhythms can be absent

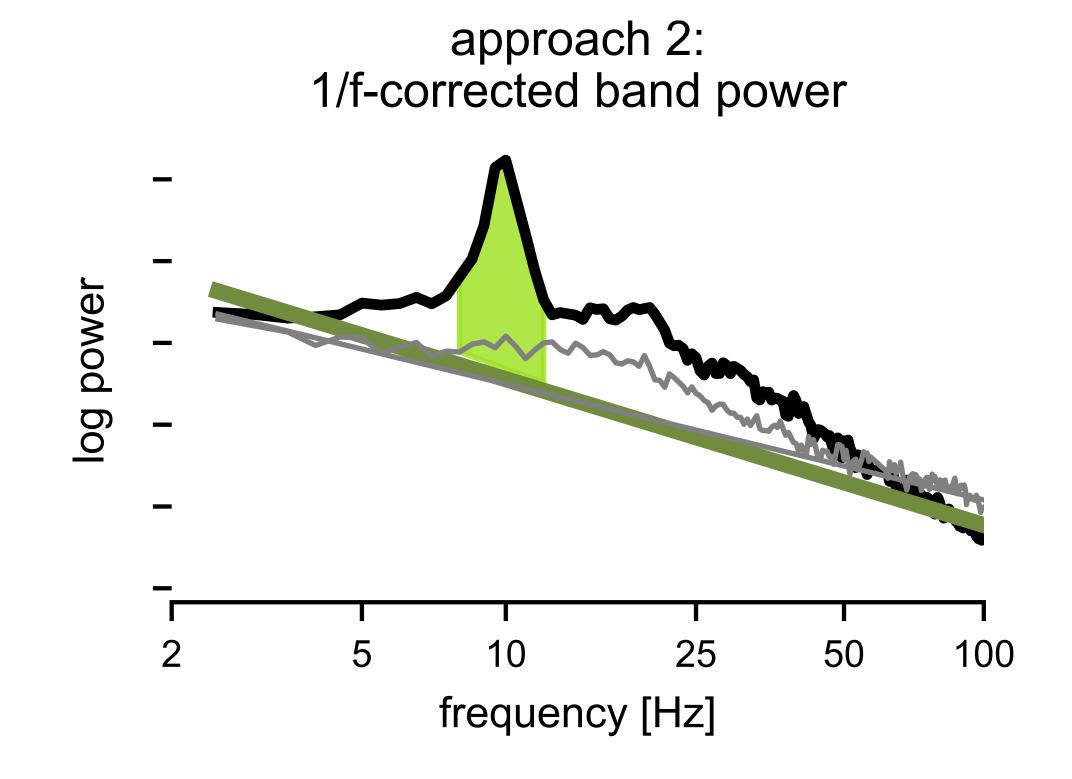


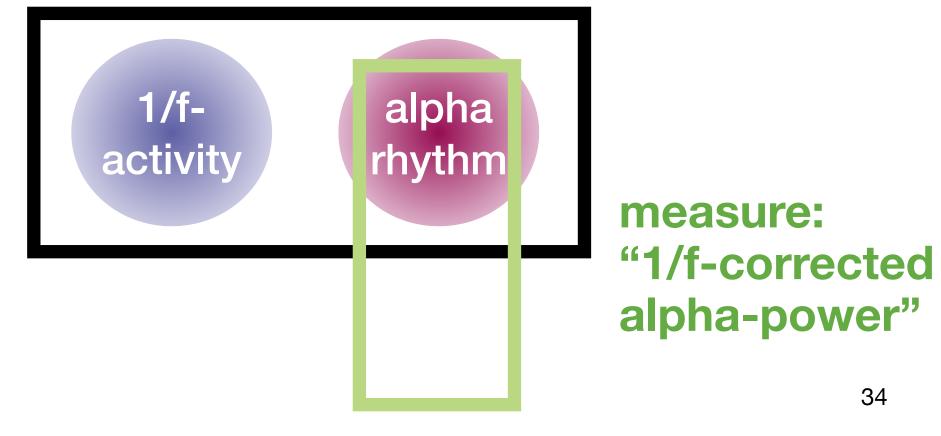
pitfalls: not only rhythmic changes + rhythms can be absent



new measures needed?





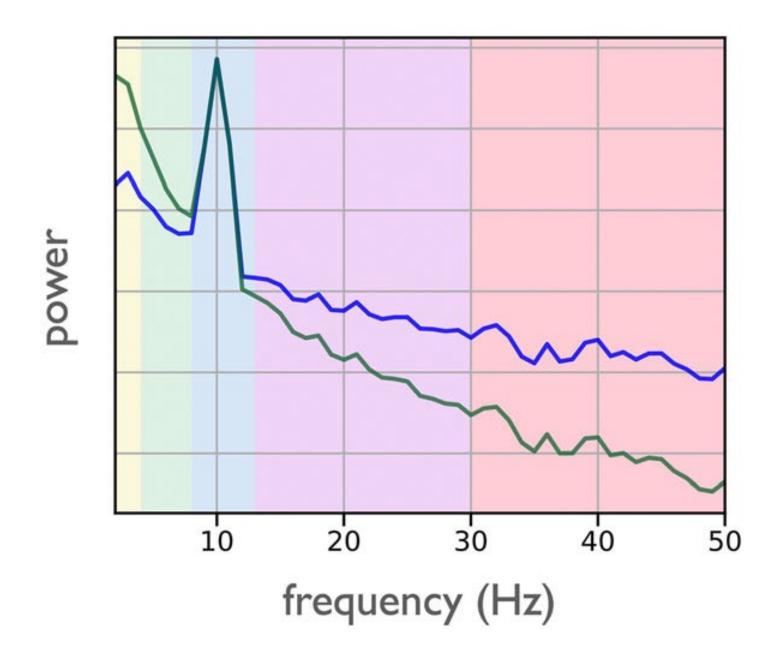


1/f-corrected alpha power = improved way to measure oscillatory contribution more specifically?

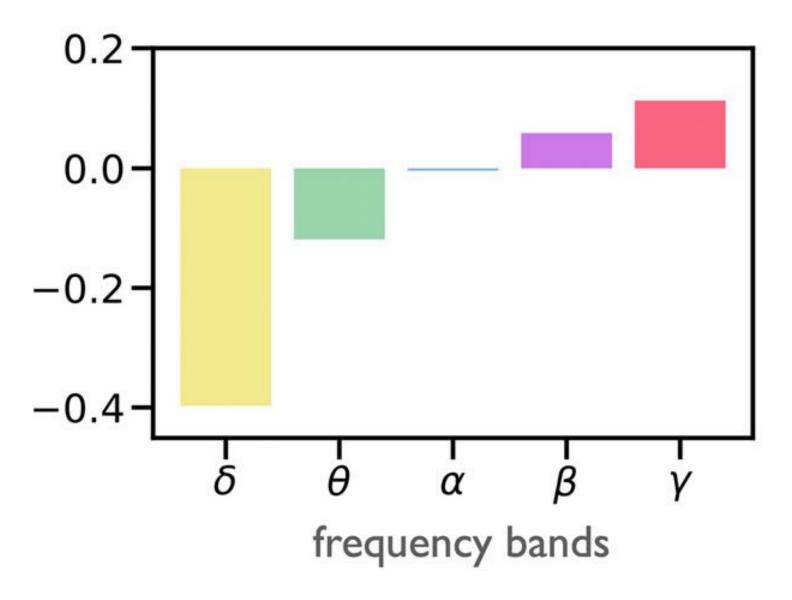
new measures needed?

Two ways to plot the same result:

changes between 2 conditions in terms of 1/f-exponent



changes between 2 conditions per frequency band



same summary measures, different signal generation

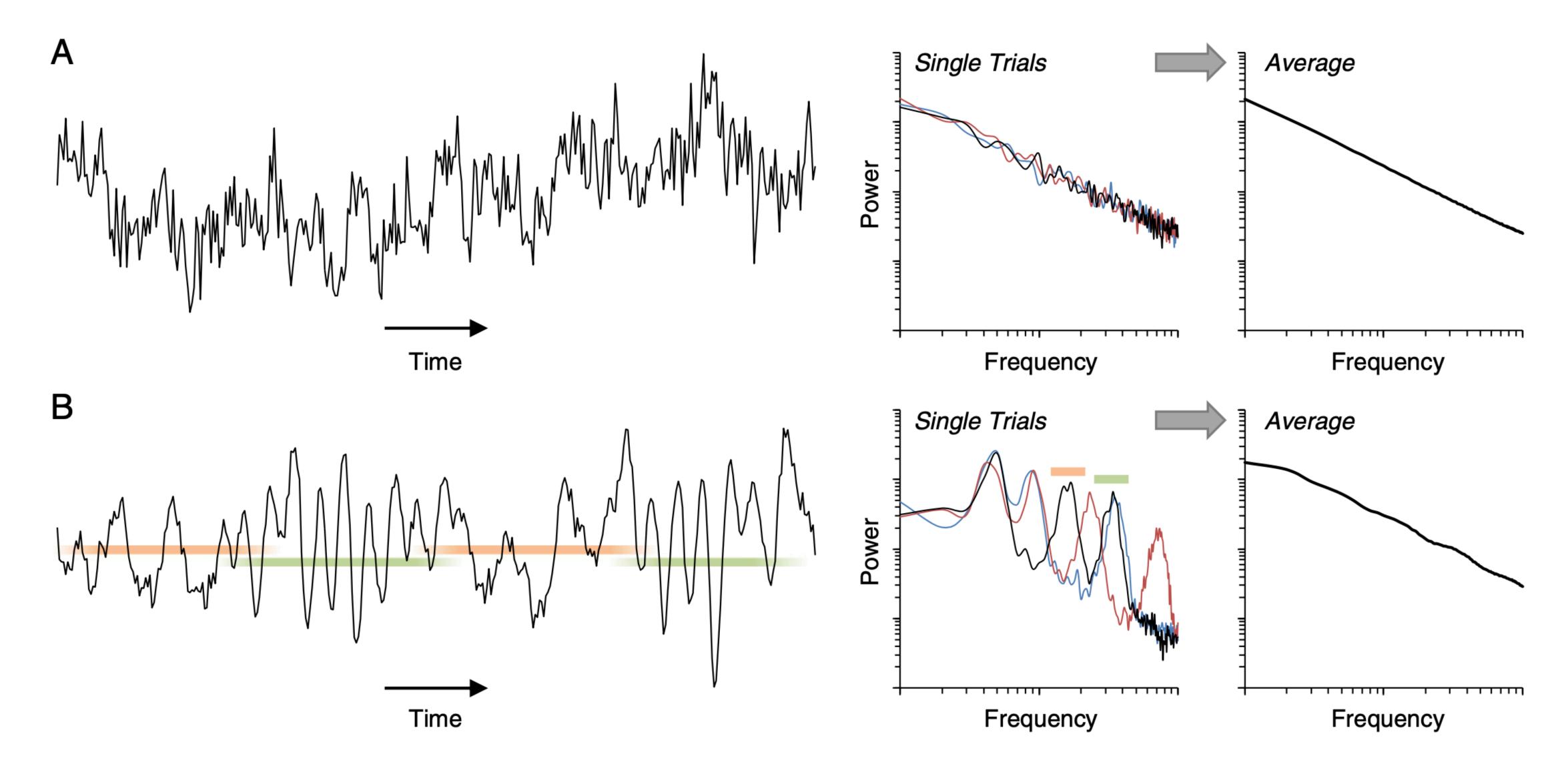
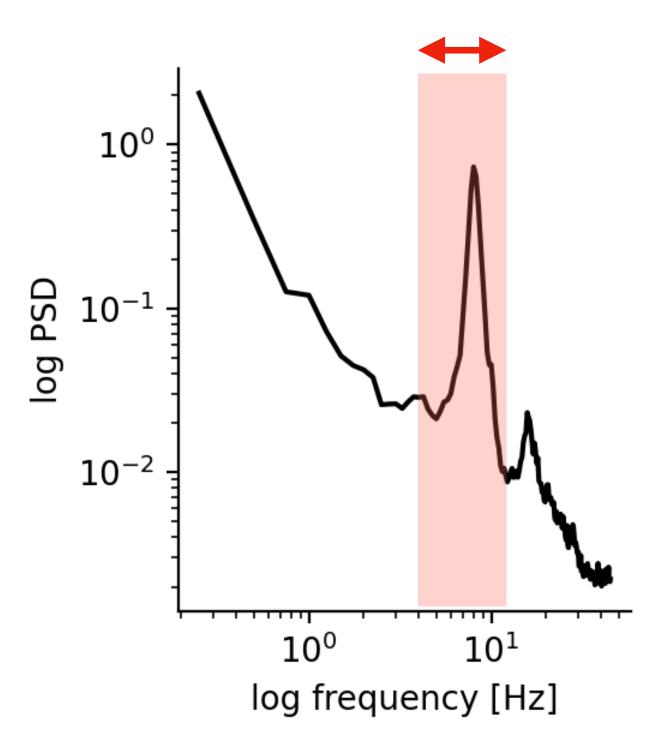


figure from: Palva & Palva Neurolmage, 2012

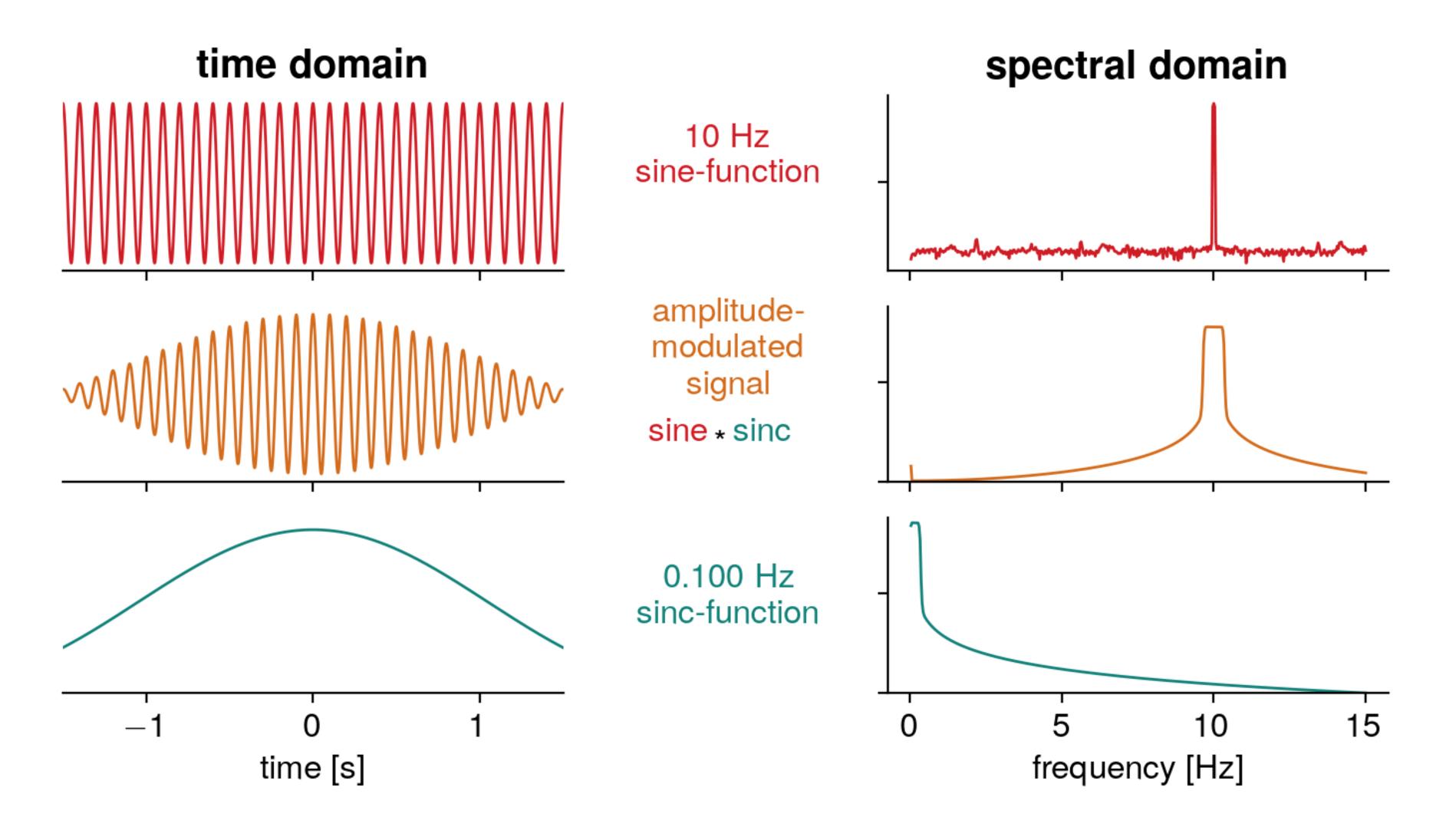
phenomenon: amplitude modulation

neural rhythms show amplitude modulation.



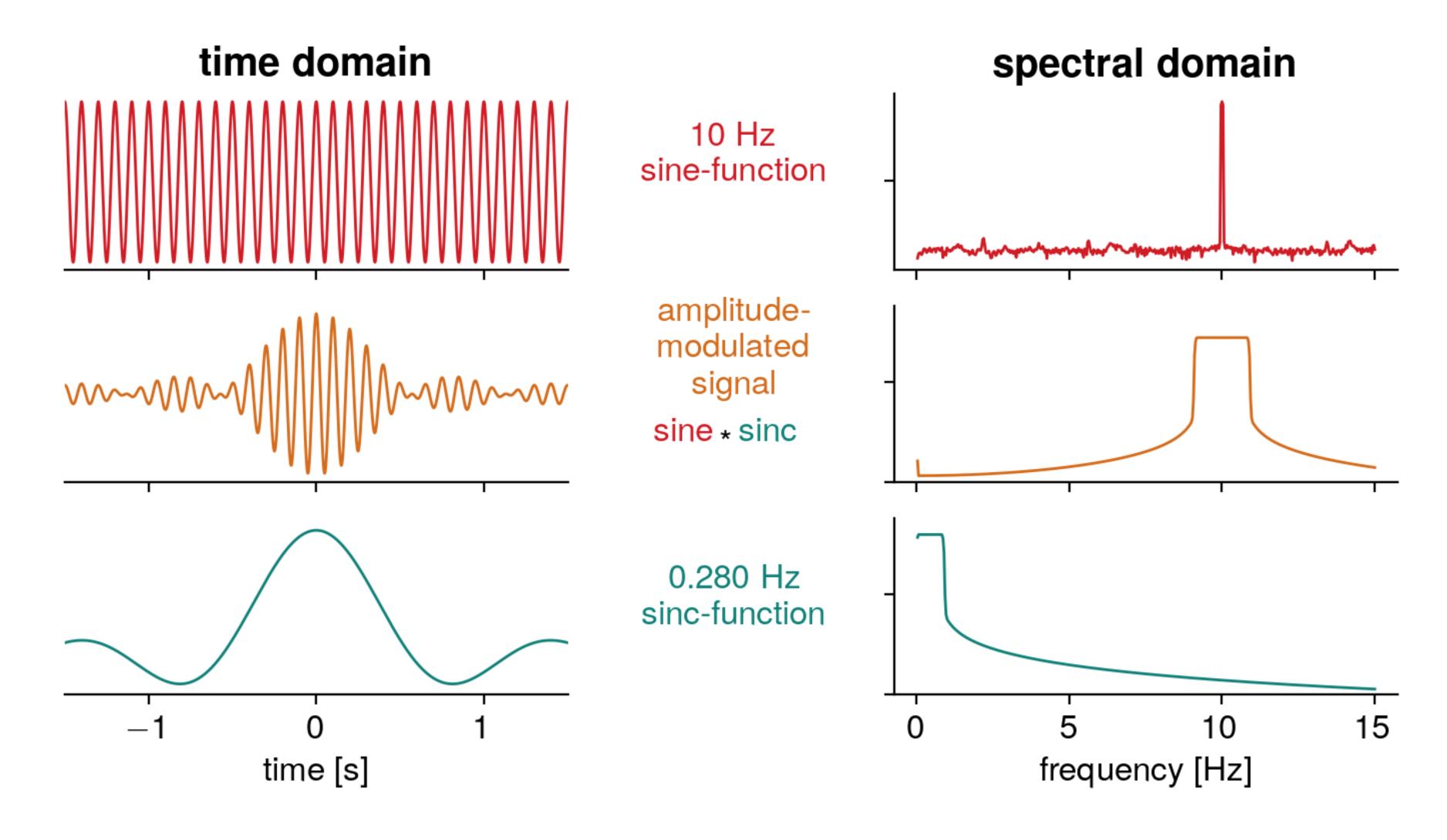
effects of amplitude modulation on spectrum

amplitude modulation can contribute to a broadened spectral peak.

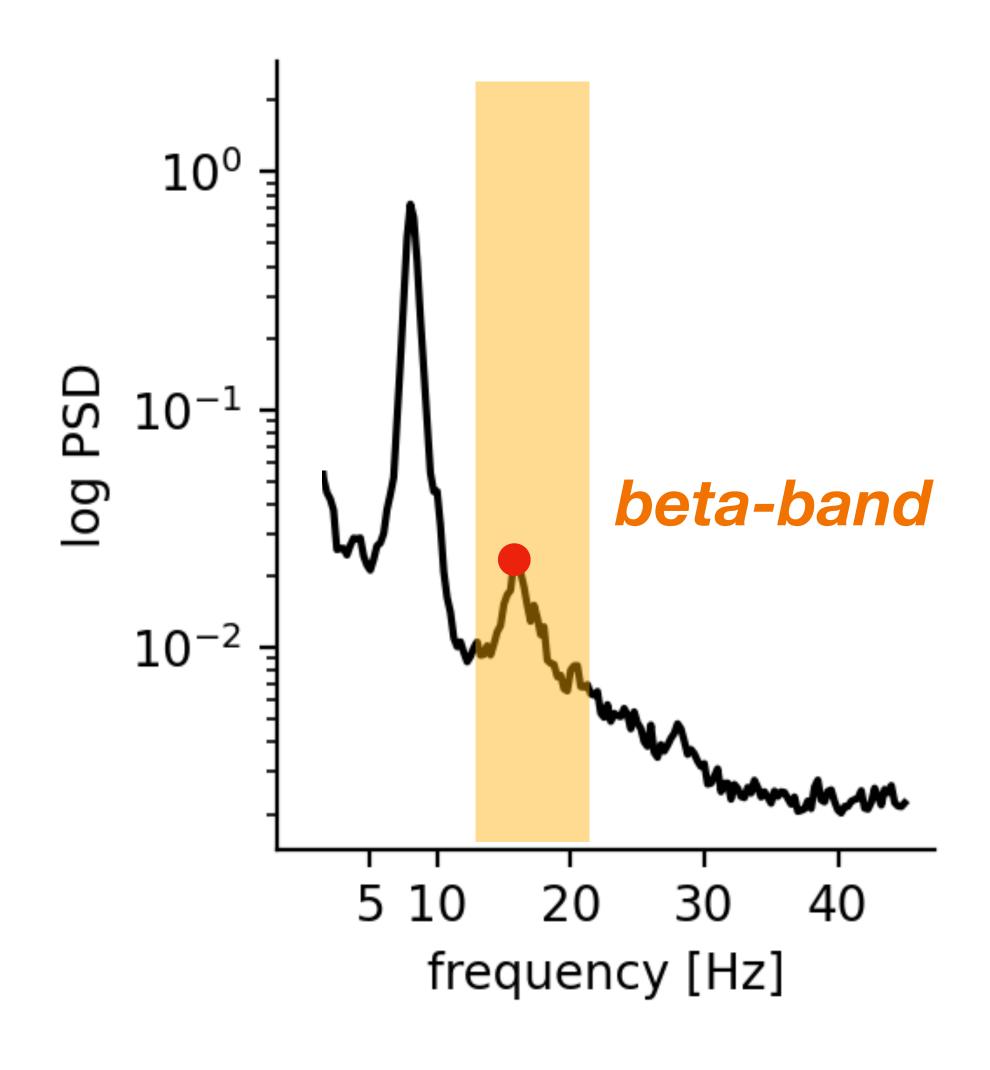


effects of amplitude modulation on spectrum

amplitude modulation can contribute to a broadened spectral peak.



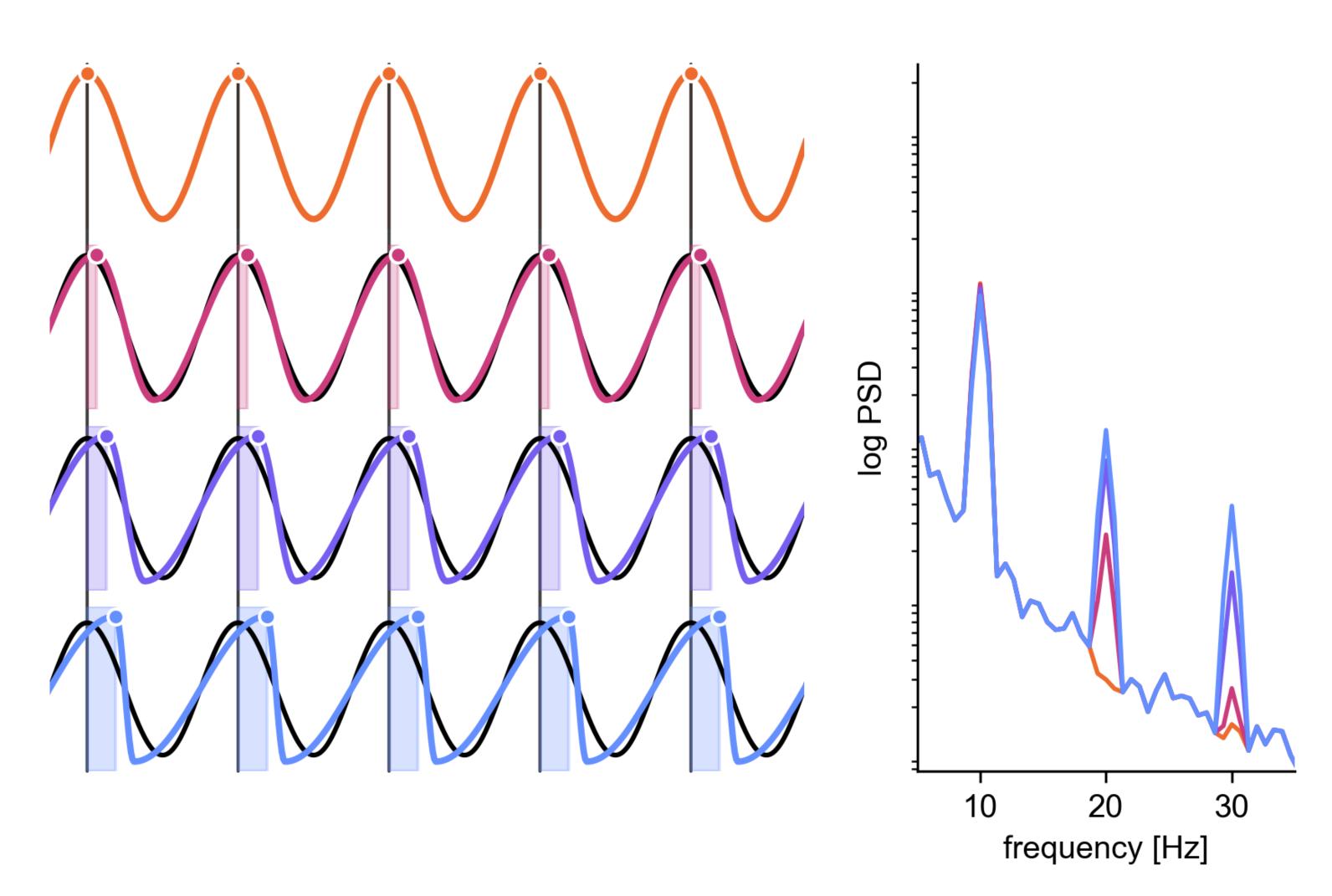
higher frequency spectral peaks



- verify presence of peak
- identify frequency of peak in beta-band

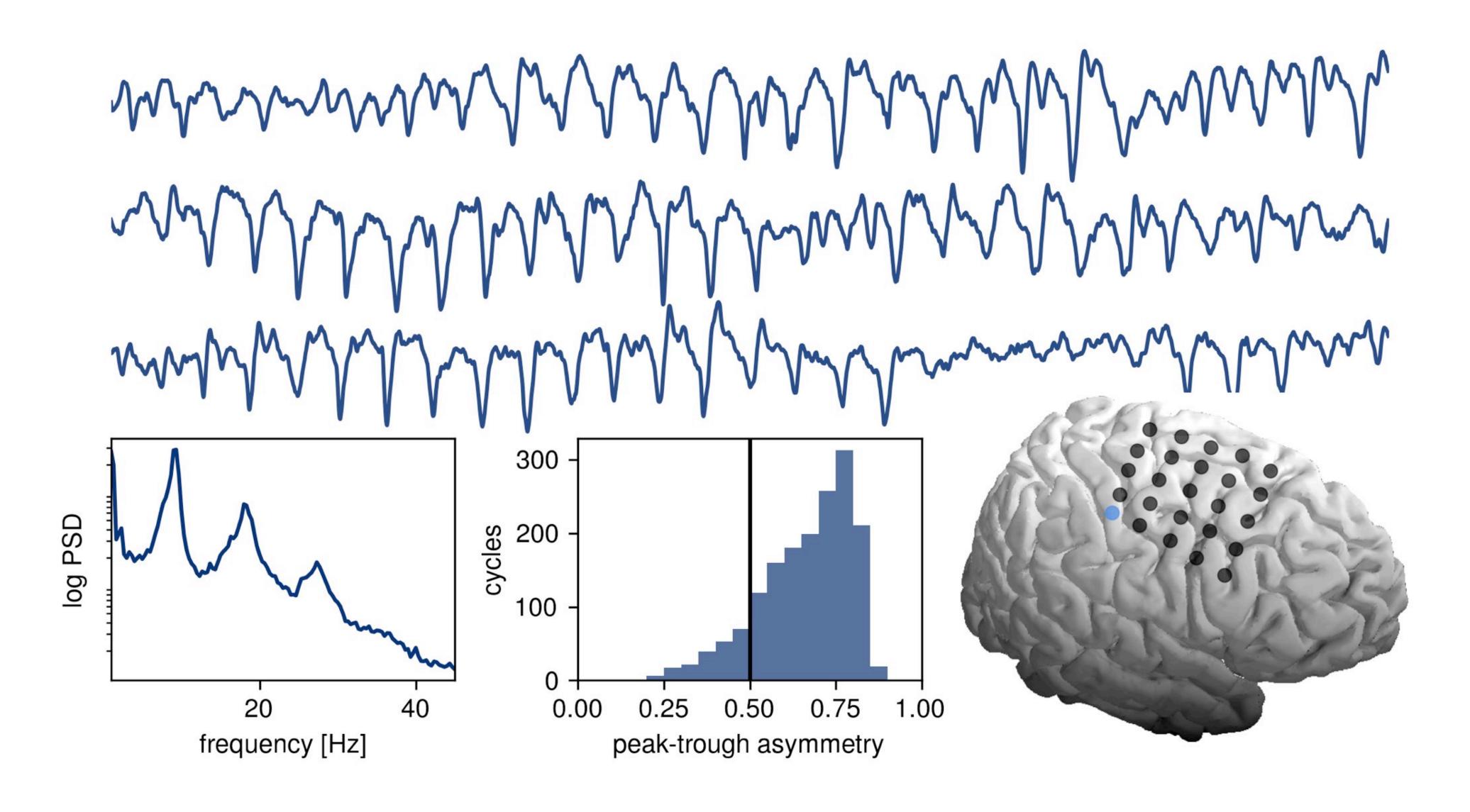
 additional spectral peaks in higher frequency bands: genuine rhythms or harmonic contributions?

pitfalls: waveform shape & spectral peaks

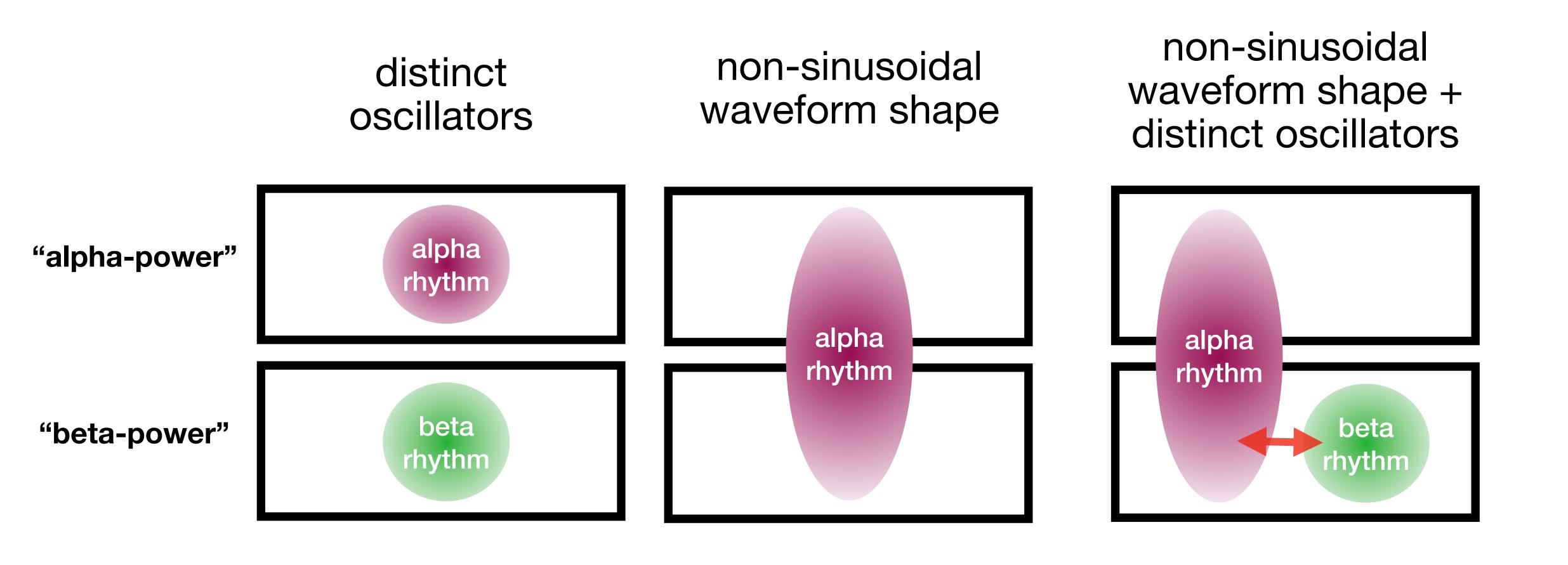


- individual spectral peaks ≠ independent rhythms
- non-sinusoidal waveforms → harmonic peaks in the spectrum.

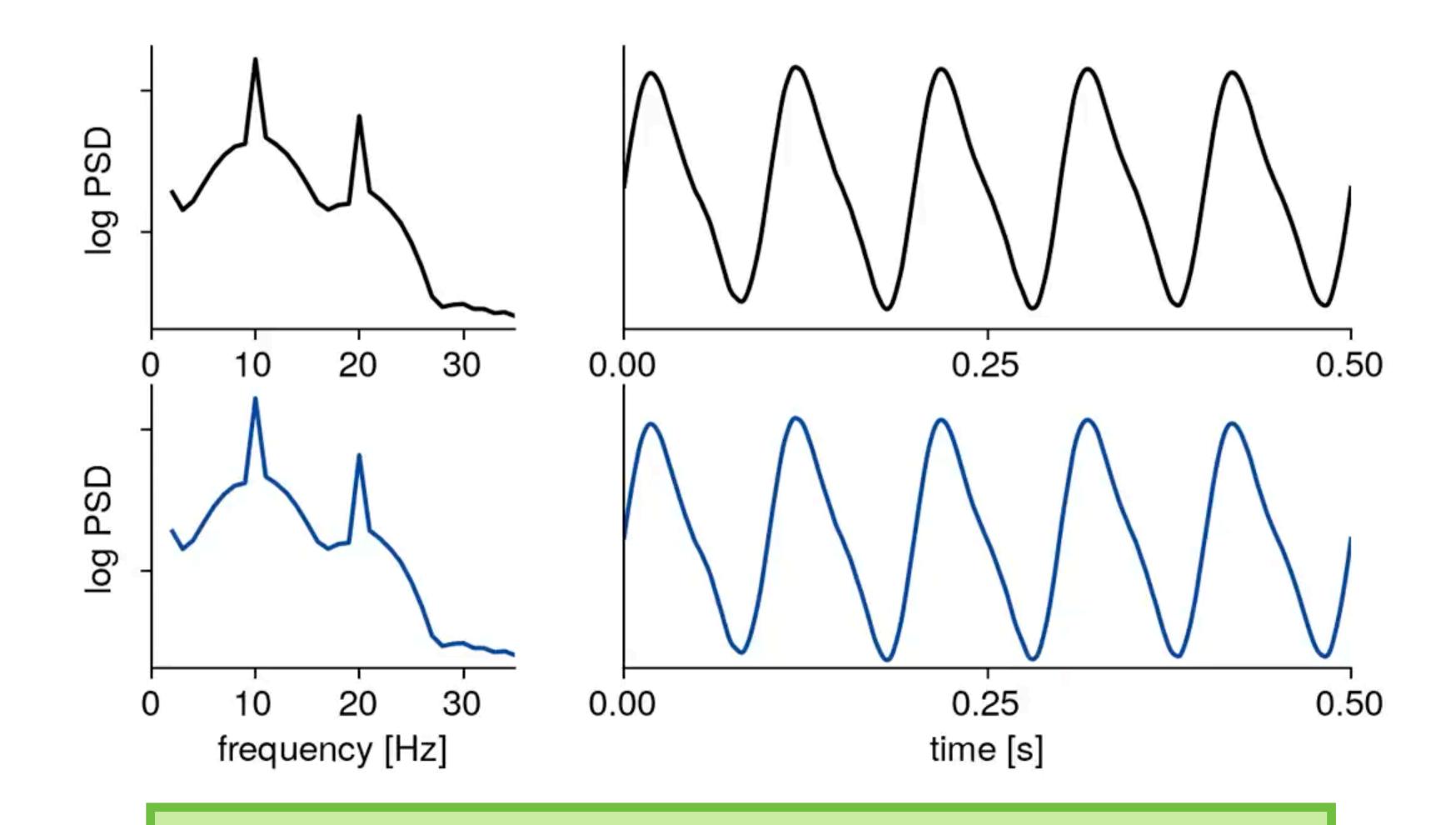
example: non-sinusoidal waveform in ECoG data



waveform shape & spectral peaks: concepts

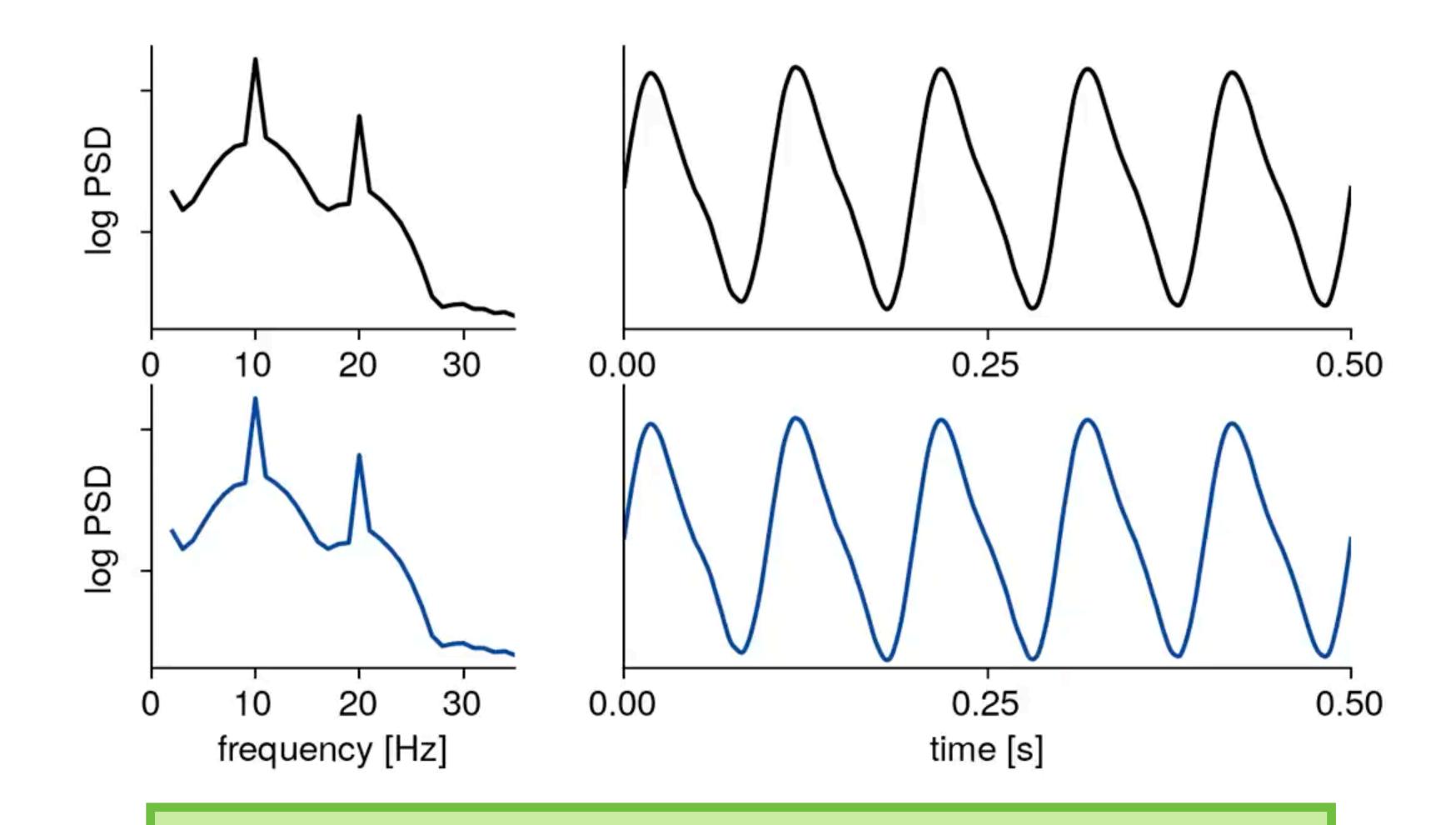


what about phase?



same spectrum – different time domain signals: the power spectrum only captures a part of the available information

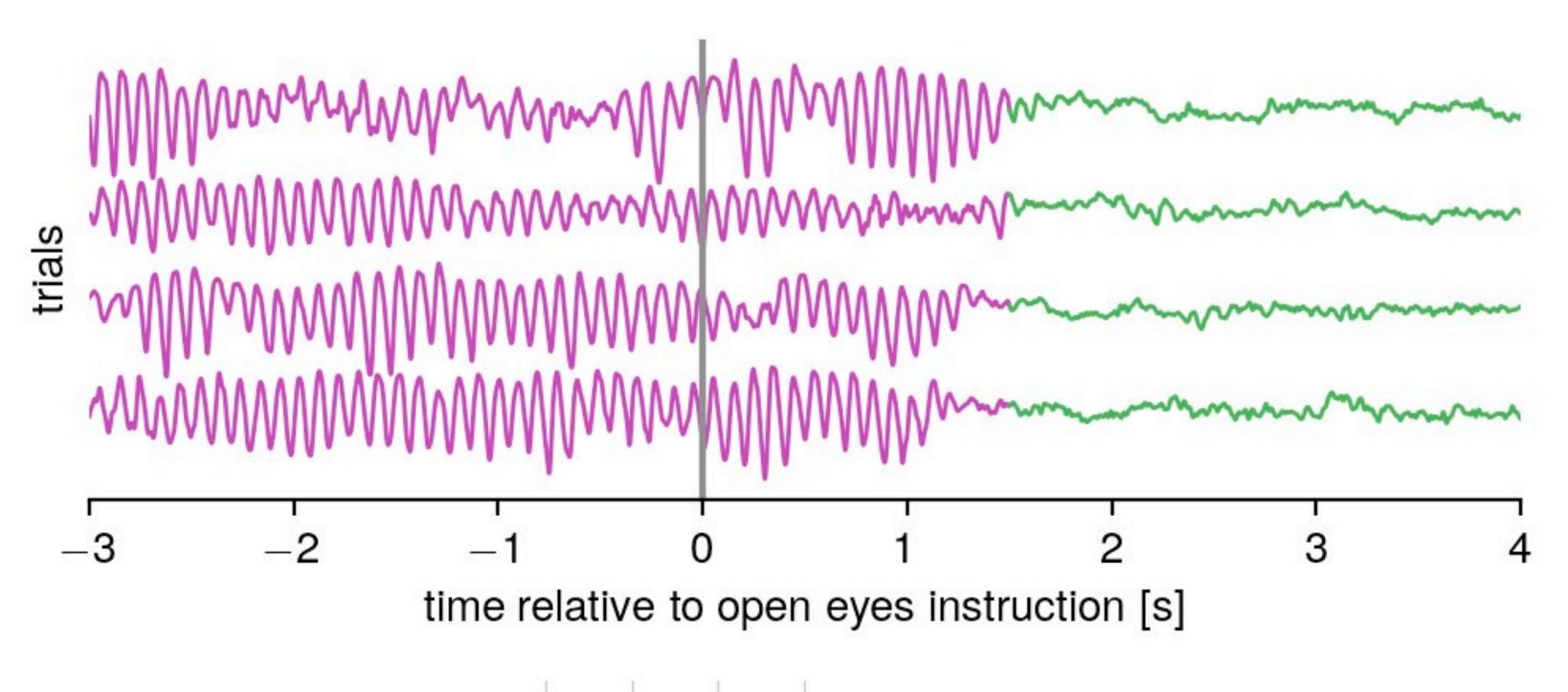
what about phase?



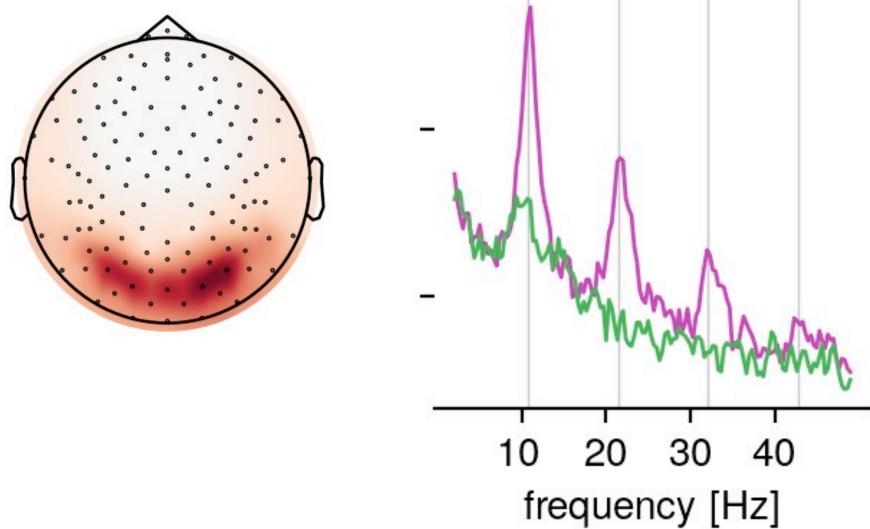
same spectrum – different time domain signals: the power spectrum only captures a part of the available information

time-frequency analysis

motivation



 How to assess temporal dynamics across a trial?



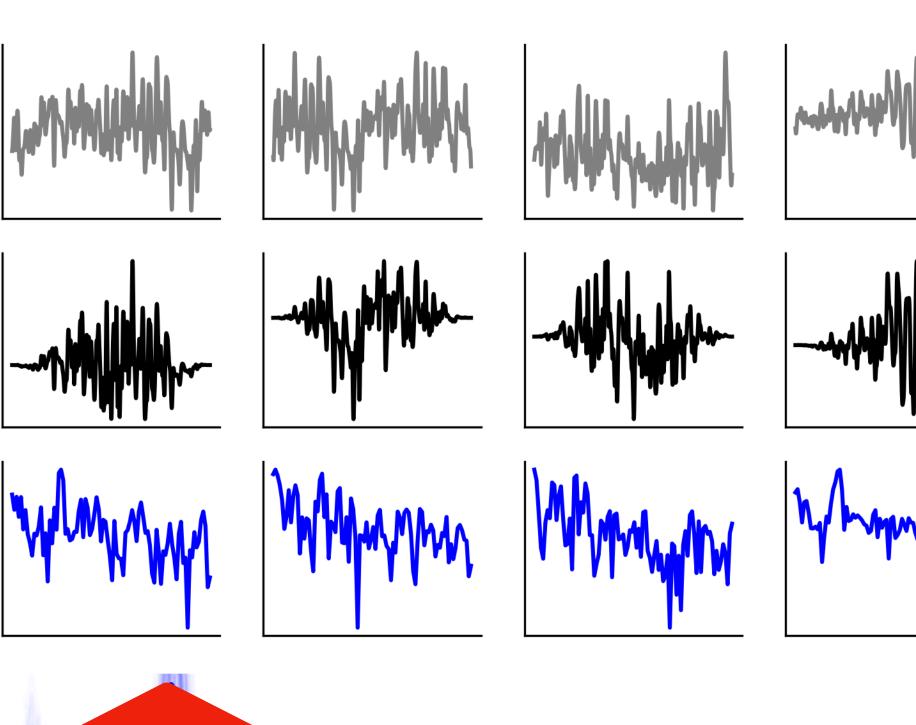
→ time-frequency representation! (TFR)

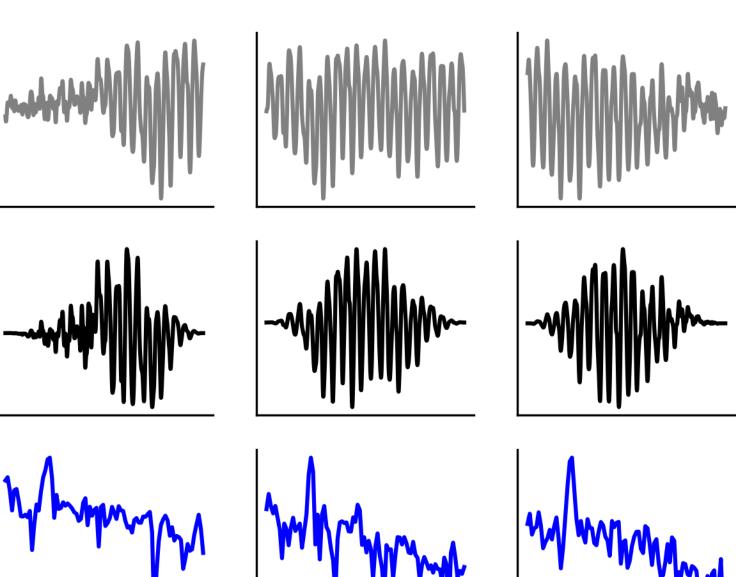
computation

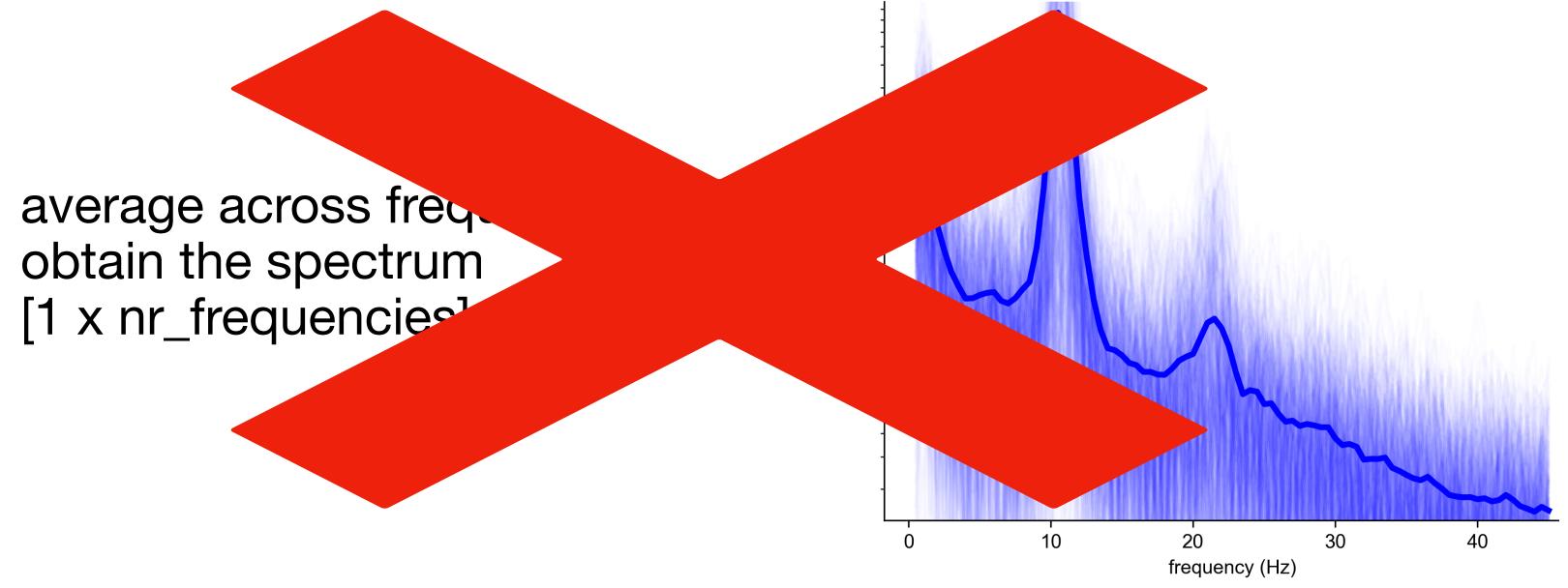
time series, cut into small segments [nr_segments x nr_samples]

time series, multiplied with a windowing function [nr_segments x nr_samples]

spectra for each segment [nr_segments x nr_frequencies]







computation

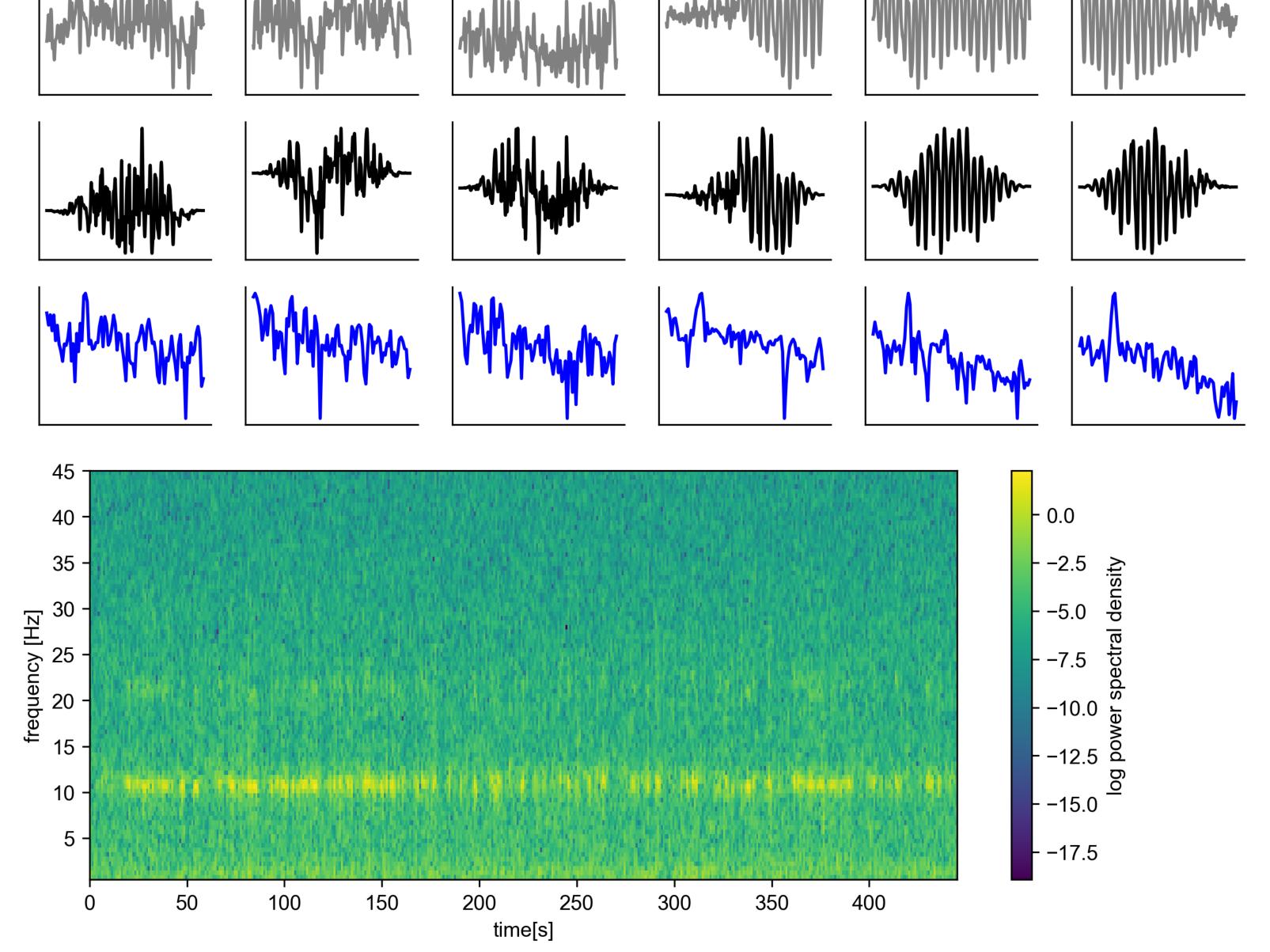
time series, cut into small segments [nr_segments x nr_samples]

time series, multiplied with a windowing function [nr_segments x nr_samples]

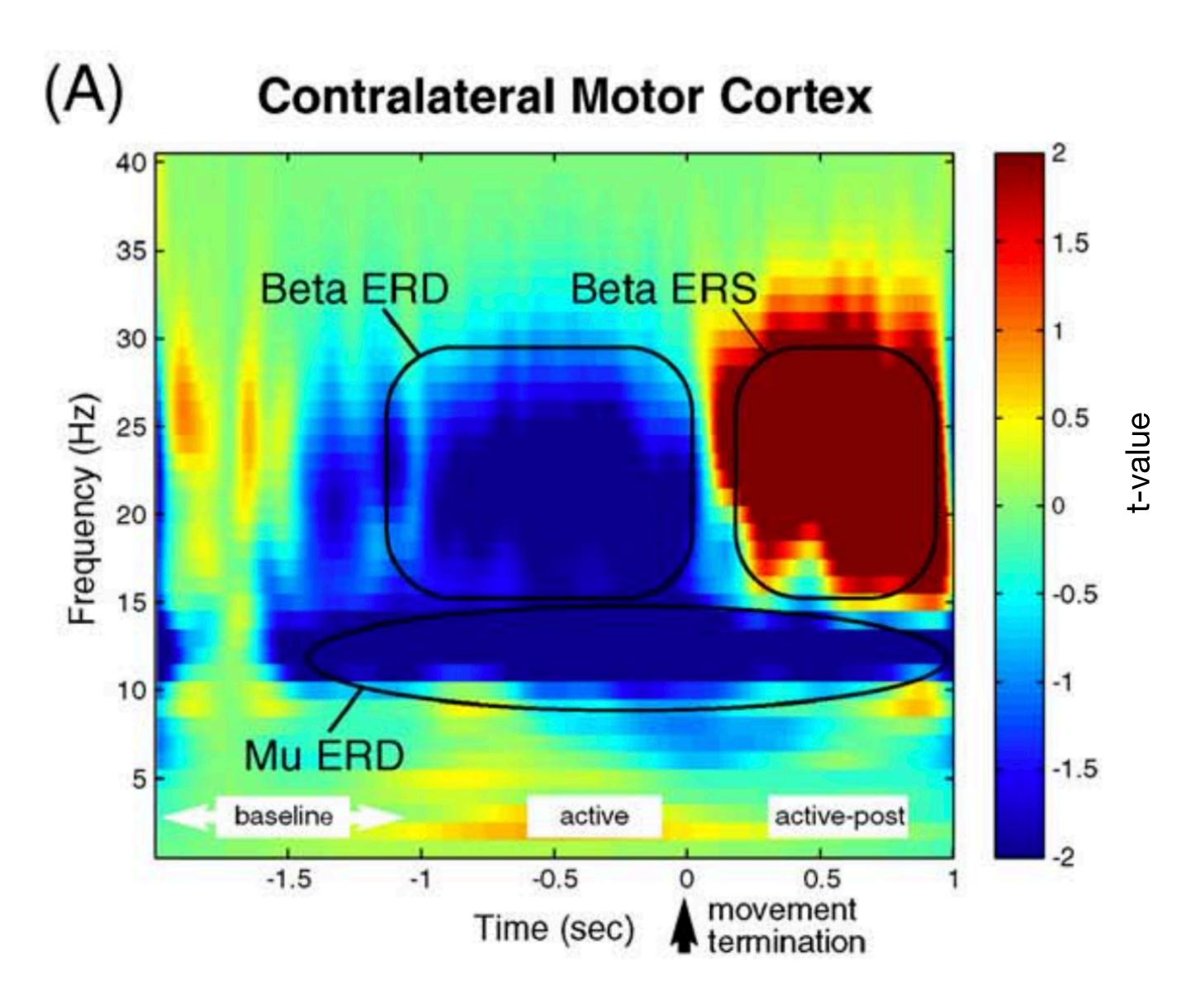
spectra for each segment [nr_segments x nr_frequencies]

rotate by 90 degrees stack spectra from segments & plot in color

→ time-frequency representation



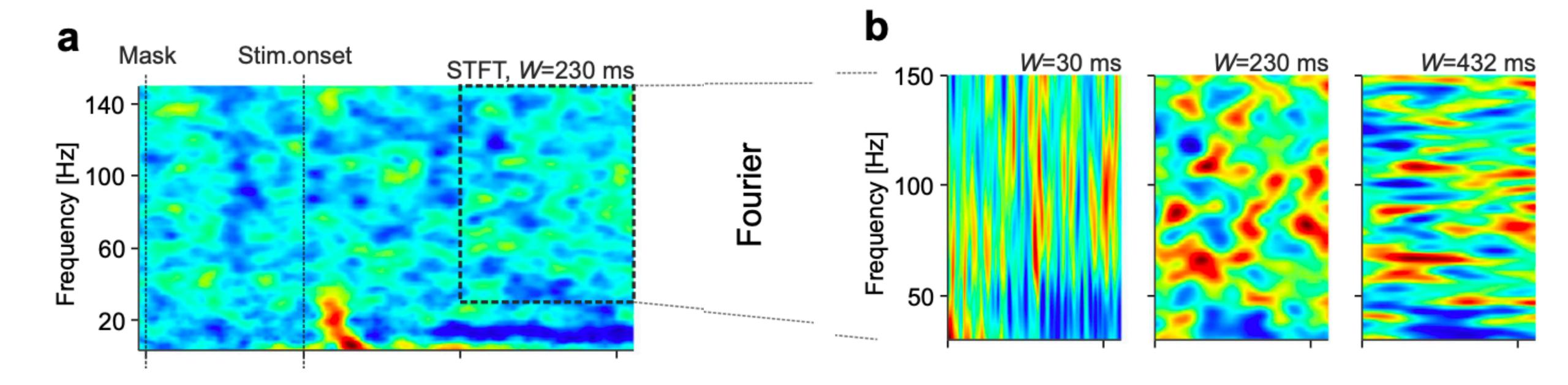
example output for MEG data



- rich spectral power dynamics in different frequency bands
- often, a baseline/ normalization procedure or contrast is employed.

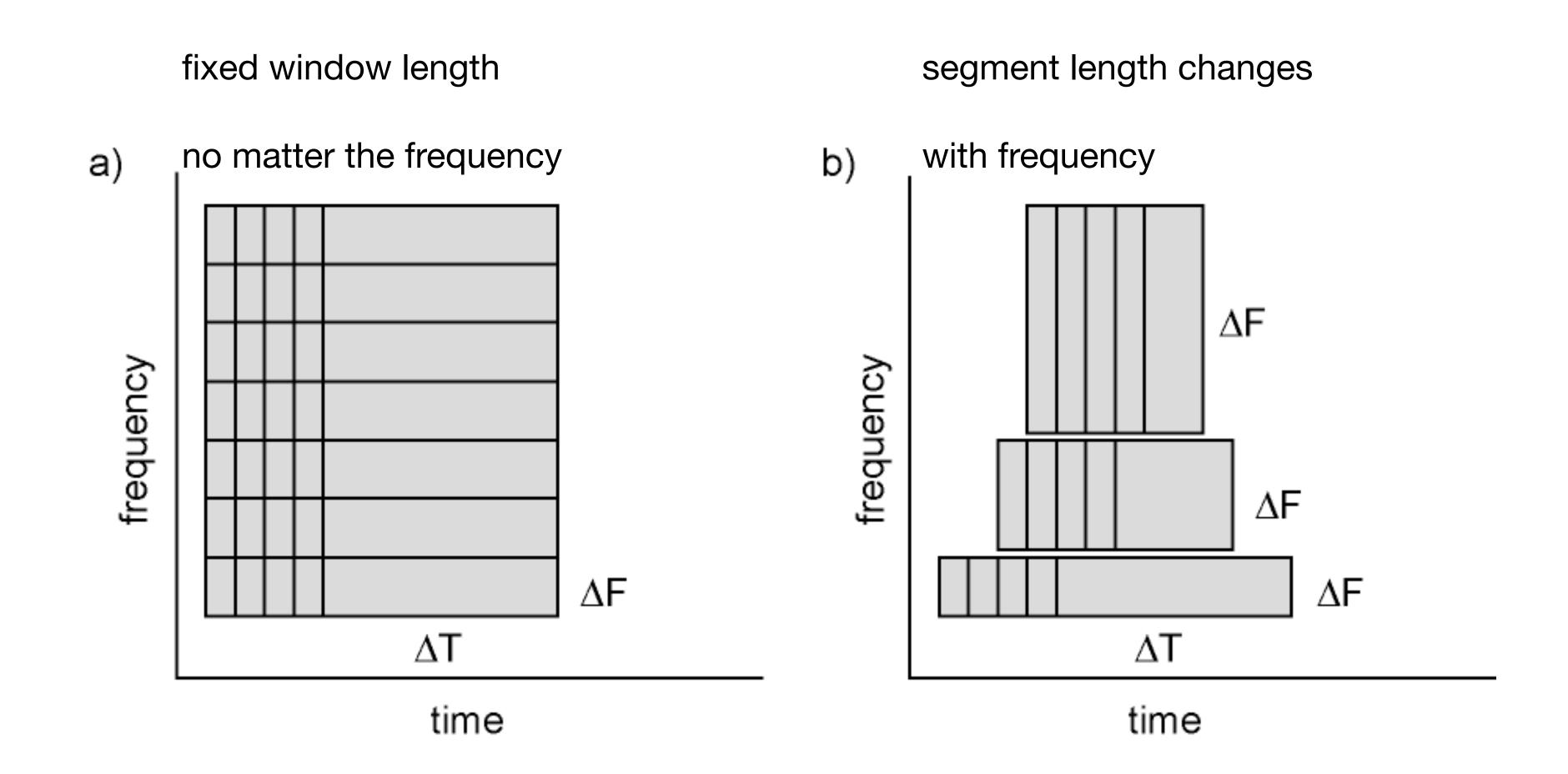
methods: parameters

• influence of parameters: window length / number of cycles



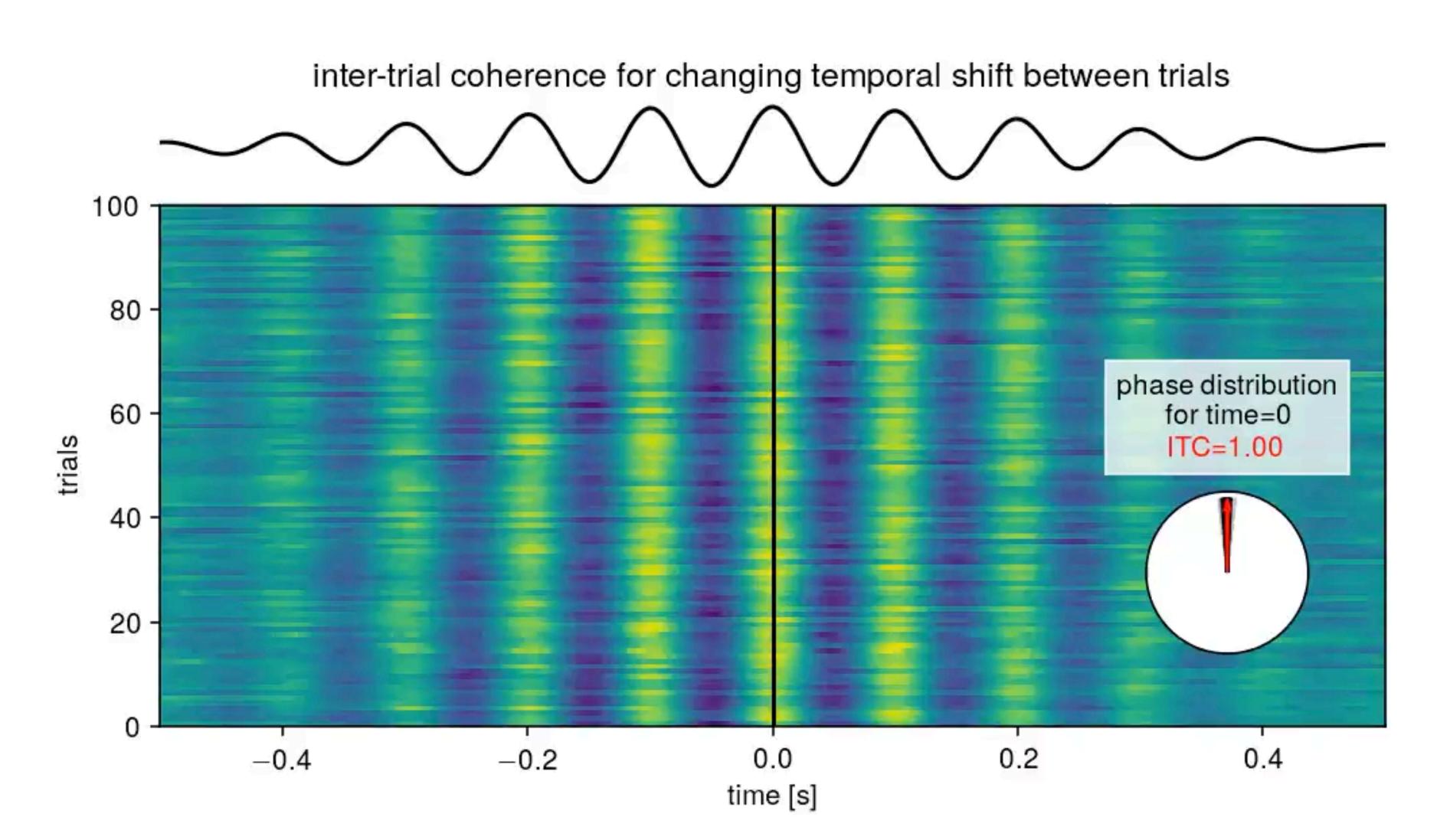
methods: parameters

different approaches for selecting segment length



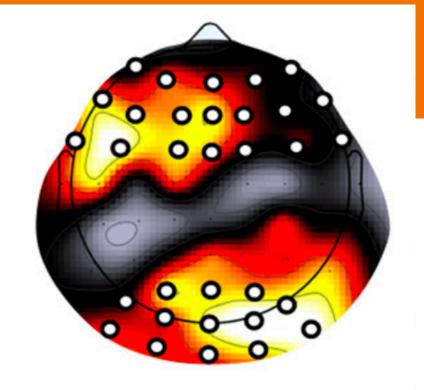
methods – inter-trial coherence

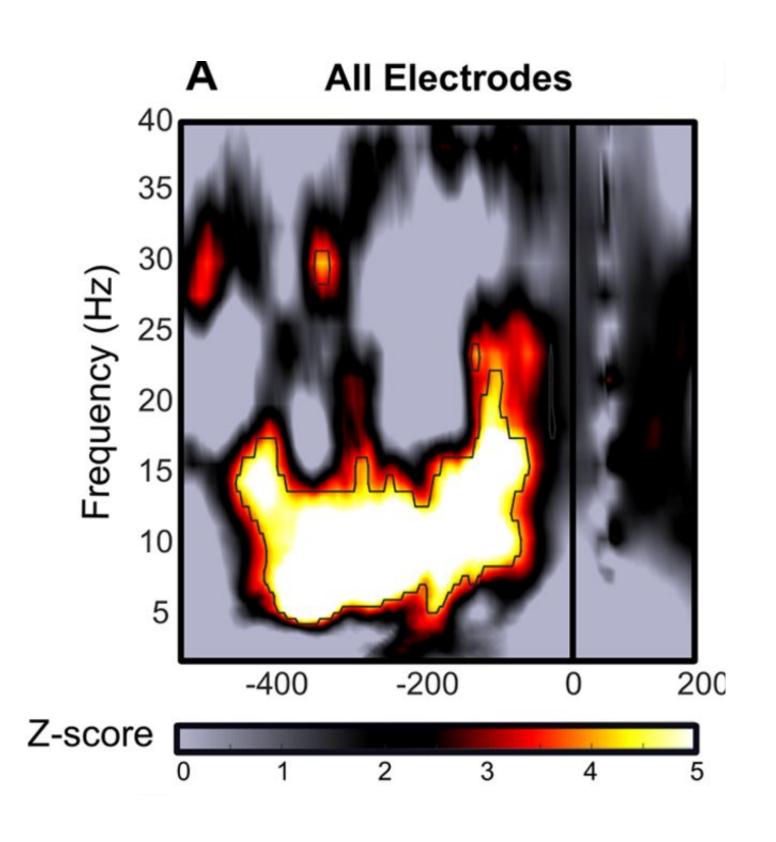
 phase information from the time-frequency representation can be used to investigate inter-trial coherence (ITC)



methods – inter-trial coherence

- comparing ITCs of two different trial groups
- research question: does oscillation phase matter for perception of phosphenes?
 "optimal phase"
 - two trial groups: phosphenes perceived vs phosphenes not perceived
 - compute ITC for both conditions
 - check if statistically different
- inference: oscillatory phase influences whether participants perceive a phosphene





concepts: evoked vs. induced

order of operations matters

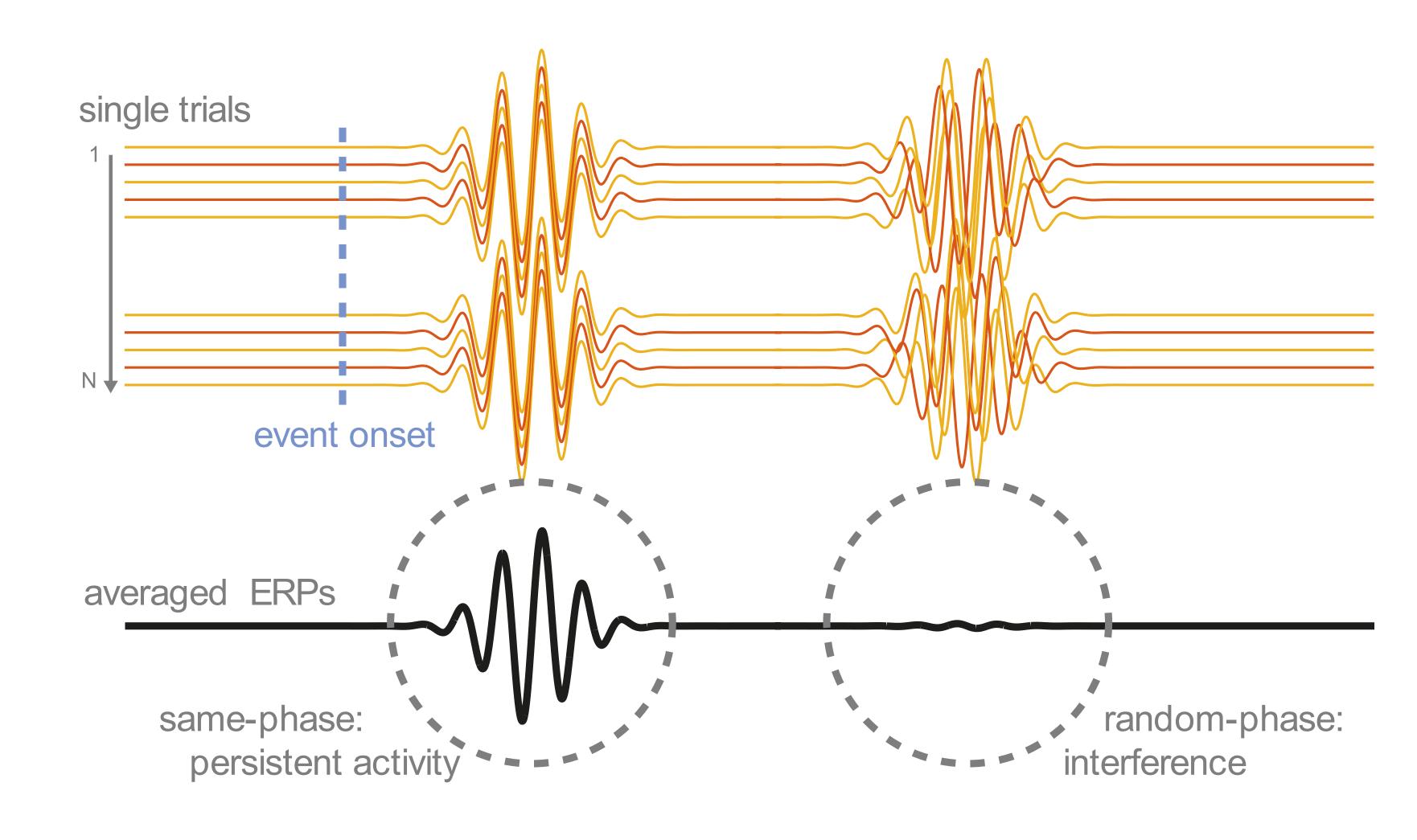
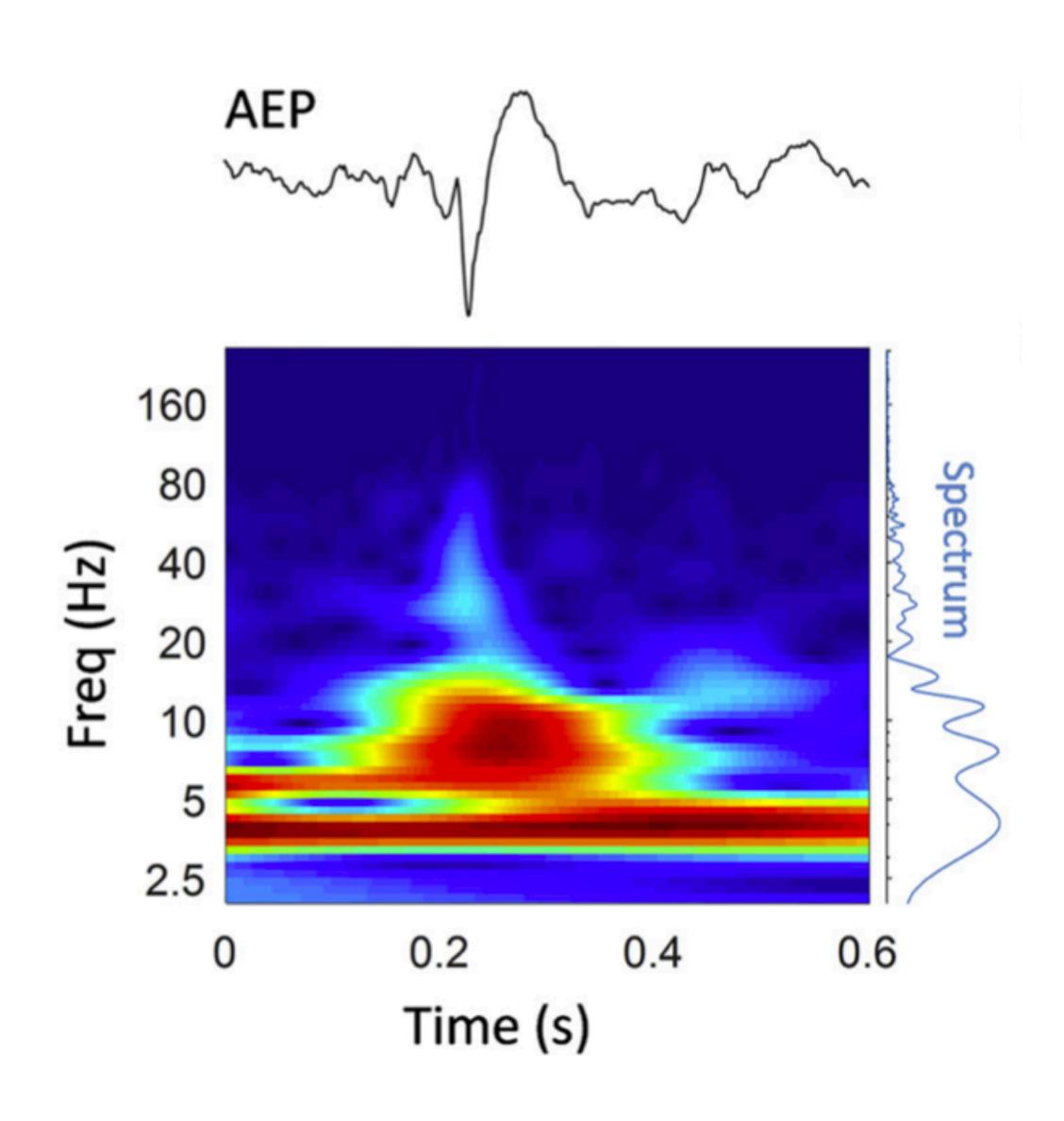


figure from: B. Ehinger: https://www.s-ccs.de/teaching-resources/open-teaching-graphics/Induced-Evoked/

concepts: oscillations vs. evoked responses



 time-frequency representation of an evoked response shows a peak in the theta frequency band
 ⇒ genuine rhythms

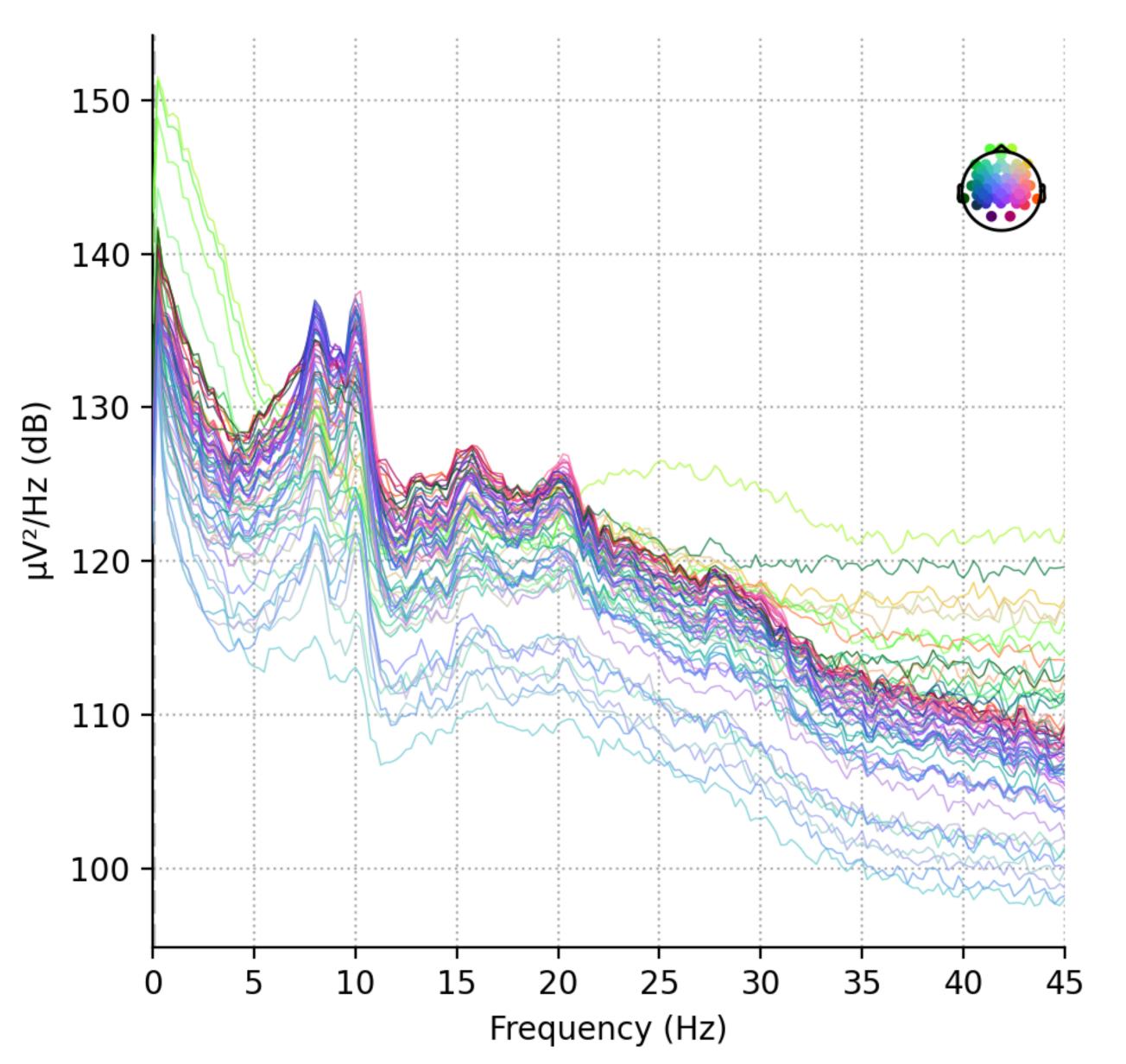
→ TFR on its own is agnostic about generative mechanisms!

figure from: Gourévitch et al., Neuroscience and Biobehavioral Reviews (2020)

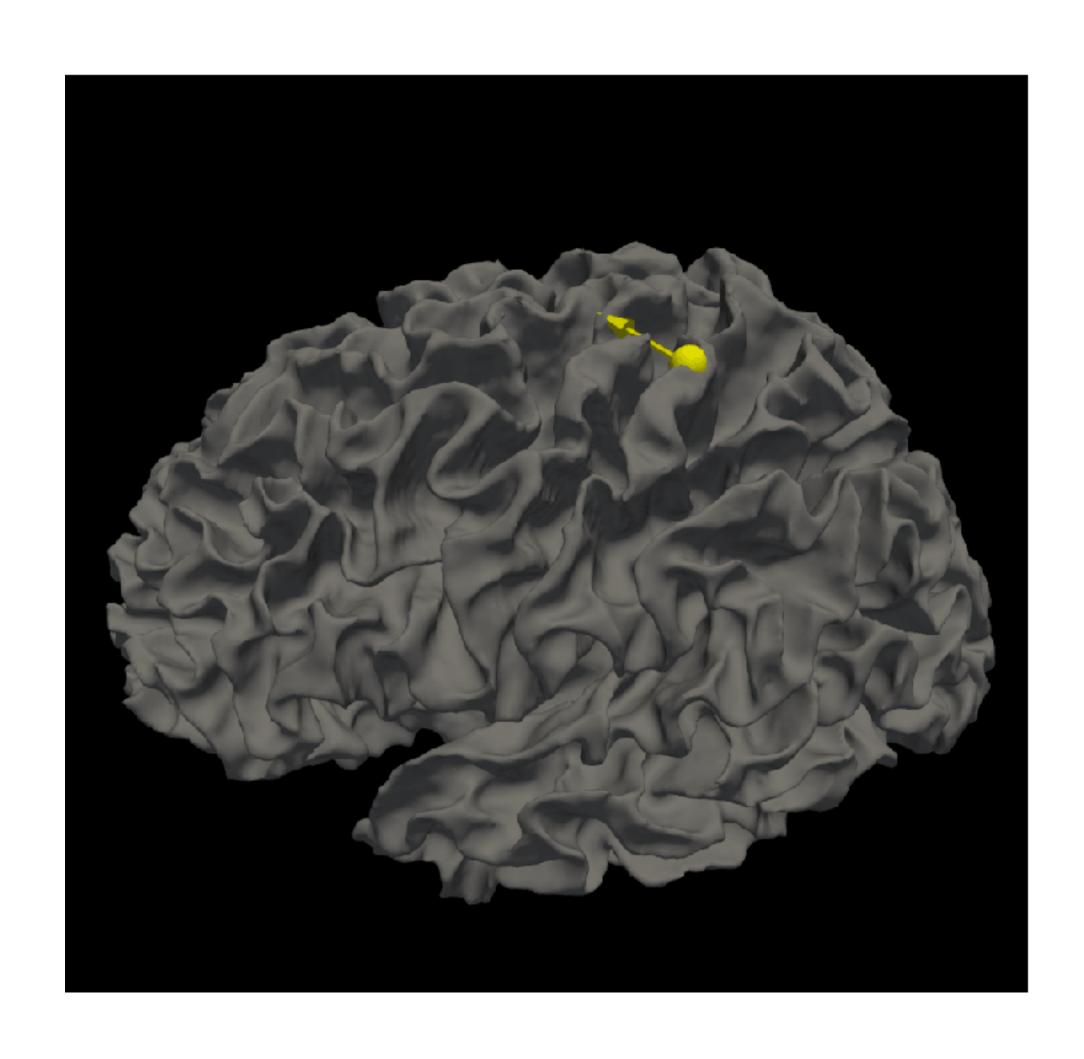
volume conduction

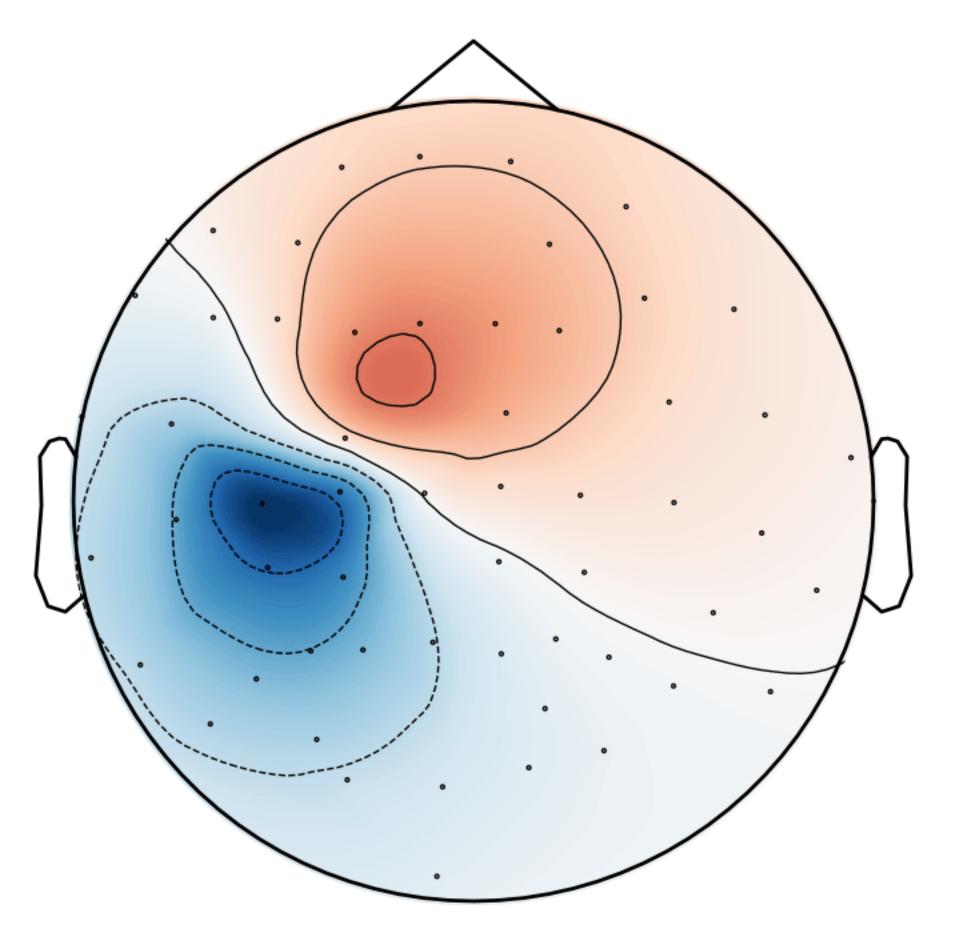
power spectra across channels – data

- channels are not independent
- different signal contributions will overlap and result in multiple spectral peaks

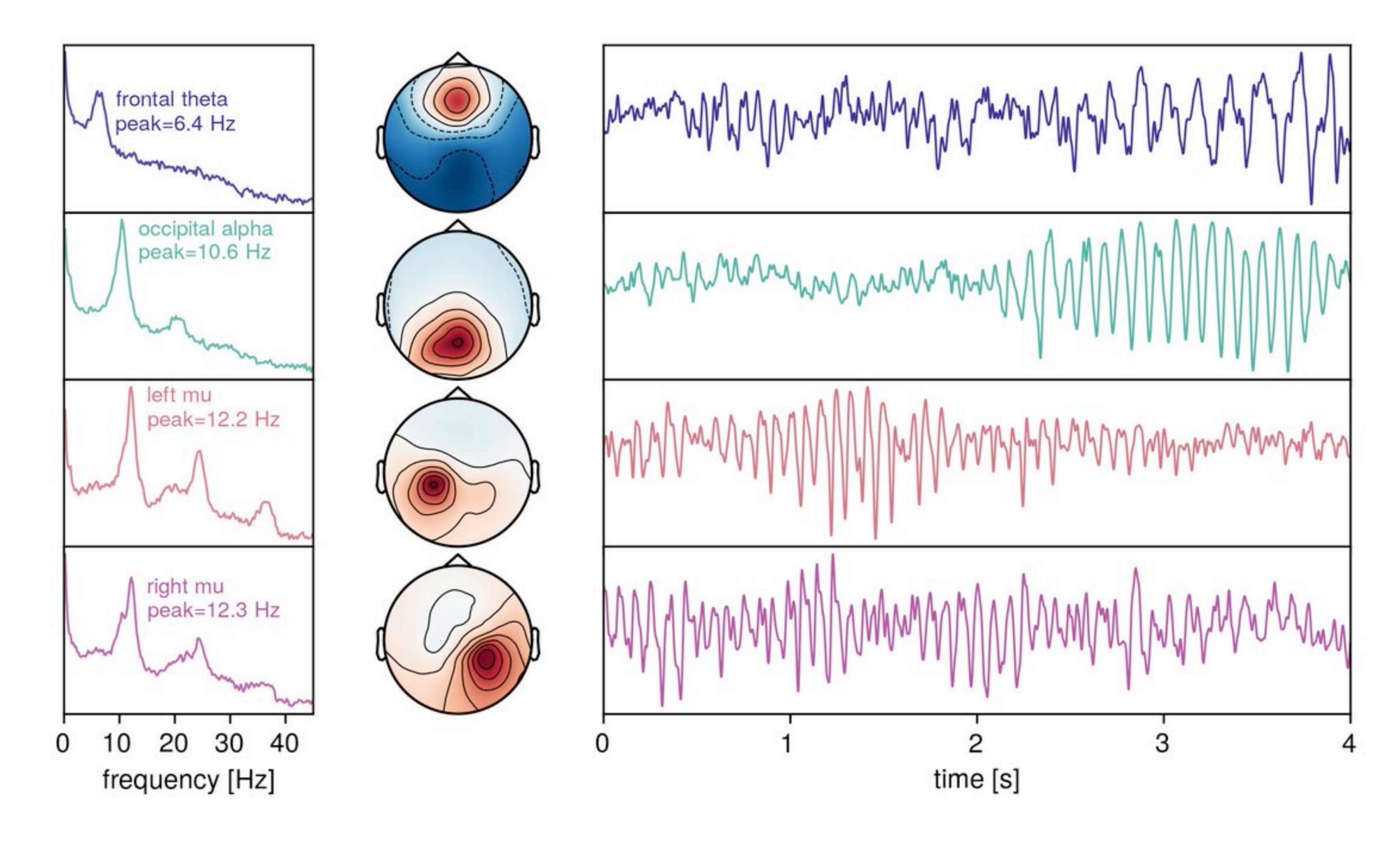


volume conduction – simulation

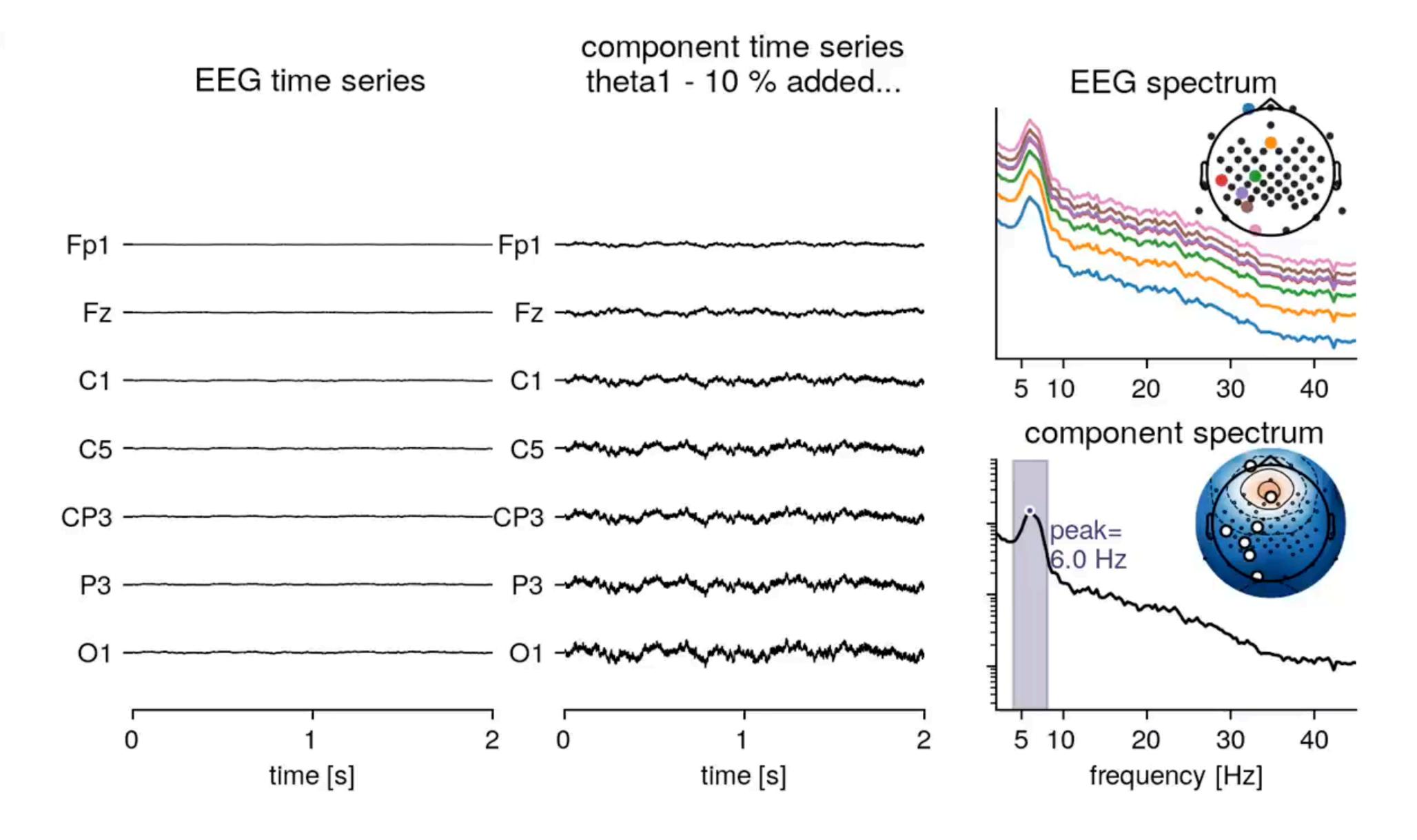




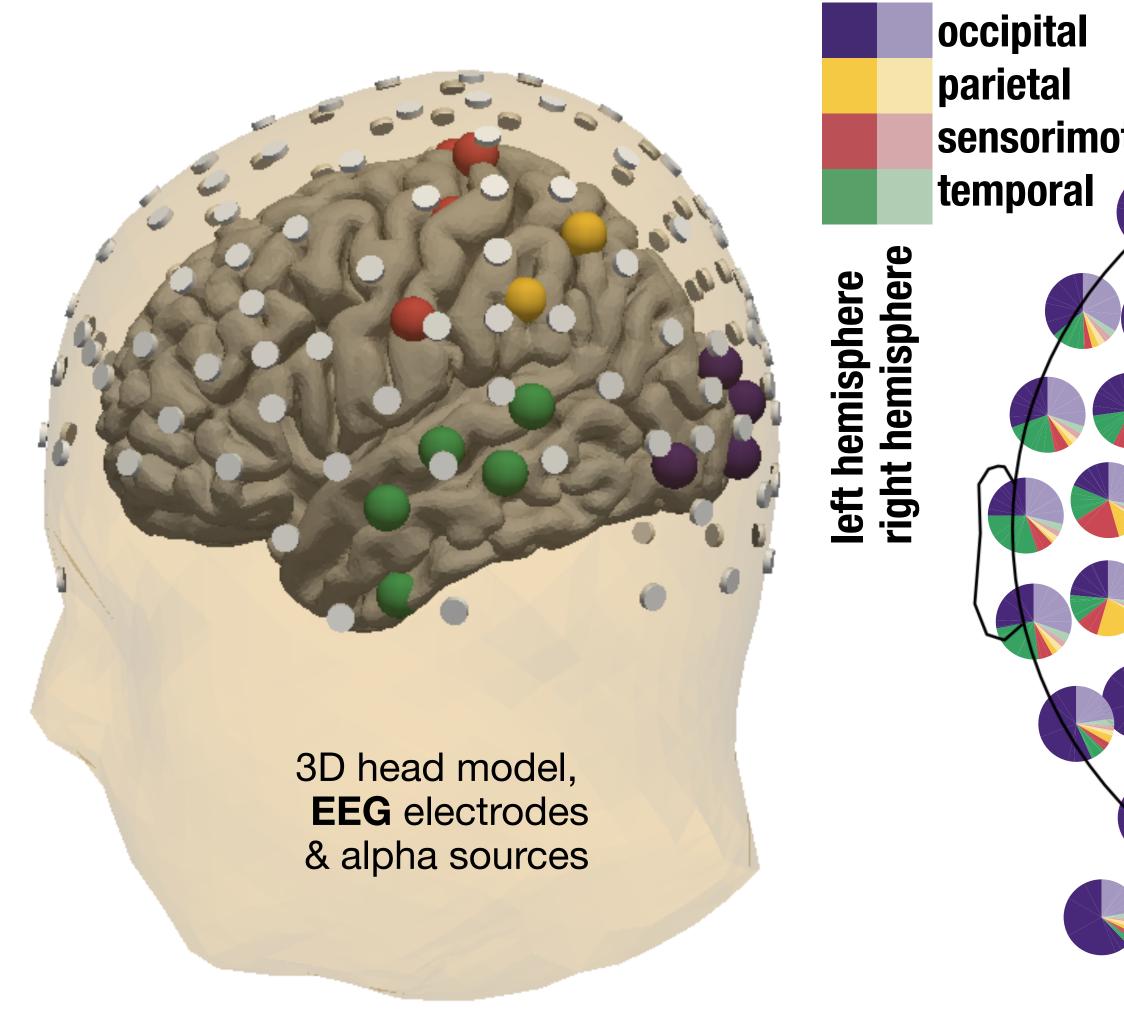
EEG is a mixture of different signals – data

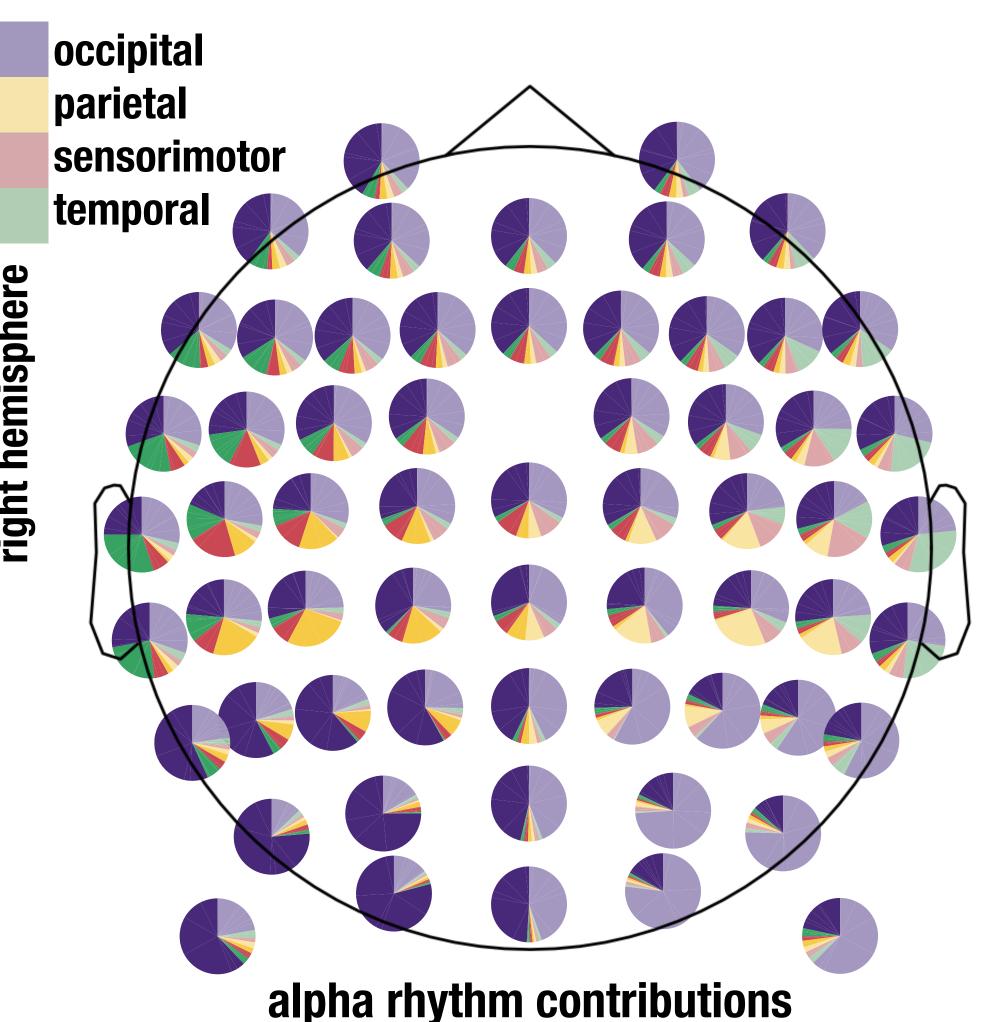


EEG is a mixture of different signals – data



EEG is a mixture of different signals – simulation





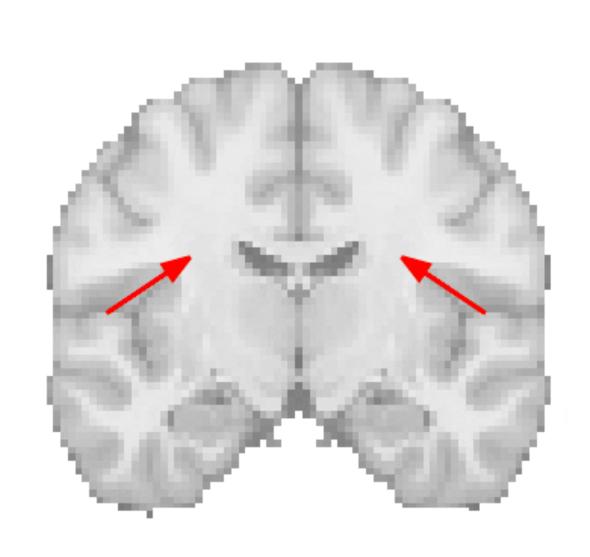
eyes closed

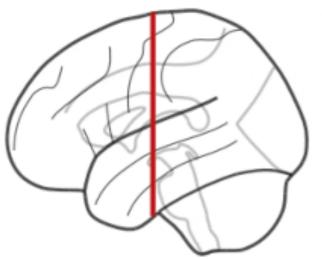
observed spectral peak could come from a region far far away from the electrode.

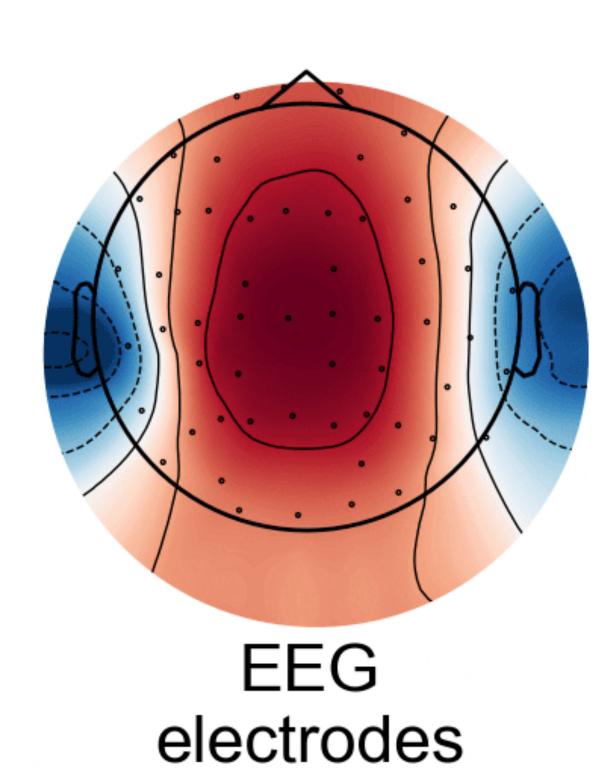
how do auditory sources end up on Cz? – simulation

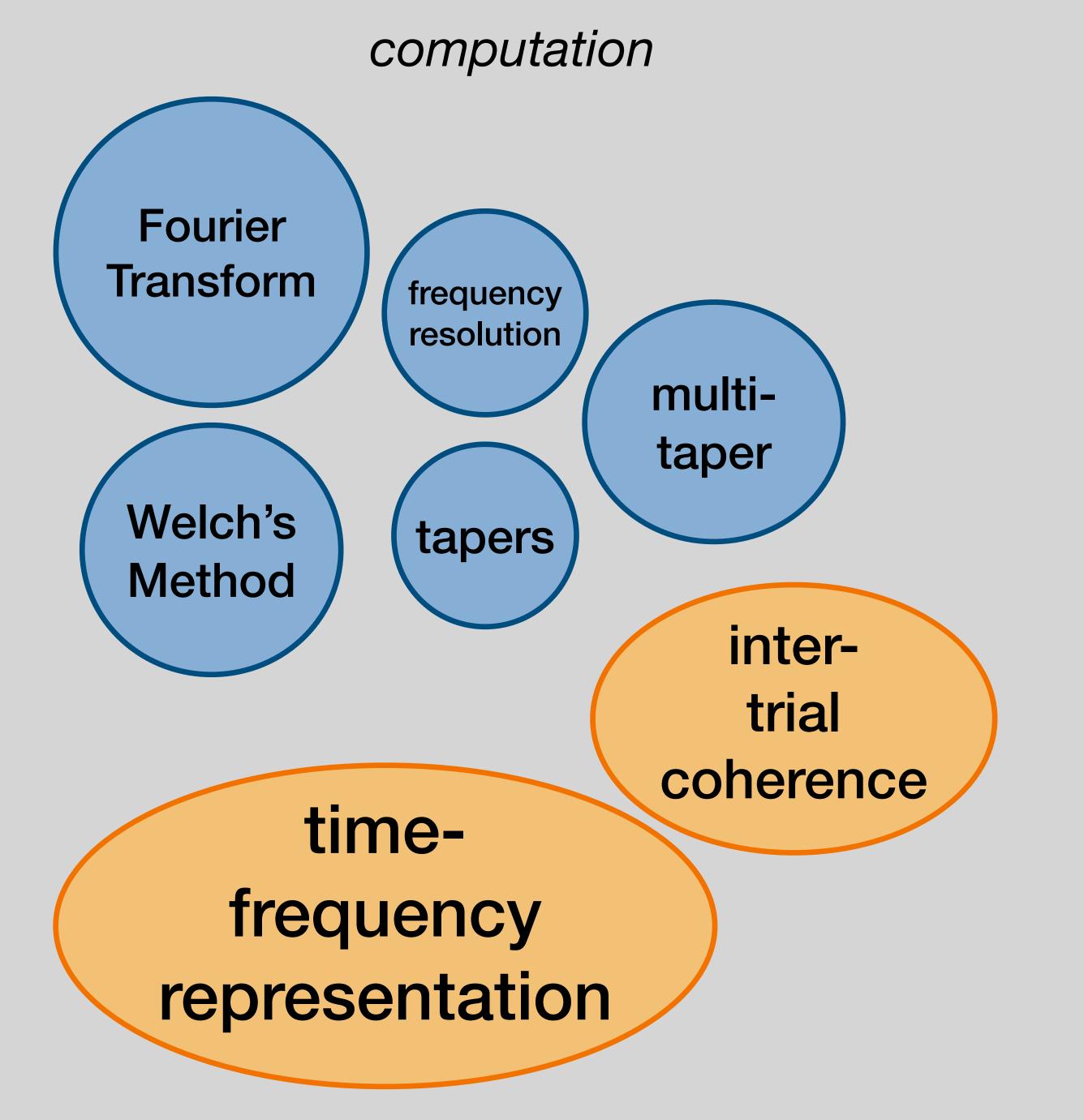
 depending on structure + dynamics, activation can show up on sensor locations that are very far away from source locations

> tomorrow: source estimation lectures + hands on!









interpretation amplitude oscillations modulation harmonics/ 1/fwaveform shape activity generative model of M/EEG volume conduction spatial patterns