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spectral analysis
- computation




motivation
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 how to detect systematic patterns In
data?

e express measured data as a linear
combination of several factors

|  fit a model consisting of two factors

e data ~ coeff1 * X1 + coeffa * Xo

here: linear sine

purpose
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» description of data in an efficient way
o explain the data



data + model fitting

1 second of EEG data (500 data points)

amplitude

data

0.0 0.2 04 0.6 0.8
time [s]



data + model fitting

1 second of EEG data (500 data points)

o attempt 1:
model fit with 1 sine with fixed frequency

yr /\’\" , ’ ’\ data ~ coeff; * sine

amplitude

data
—— model fit (sin), R%=0.127

0.0 0.2 04 0.6 0.8
time [s]



data + model fitting

amplitude

data
| —— model fit (sin), R%=0.127
—— model fit (sin+cos), R%=0.752

0.0 0.2 04 0.6 0.8
time [s]

1 second of EEG data (500 data points)

o attempt 1:
model fit with 1 sine with fixed frequency

data ~ coeffi * sine

attempt 2:
model fit with 1 complex sine (sine +
cosine) with fixed frequency

data ~ coeffia * sineq1 + coeffig * cosine



data + model fitting

amplitude

data
model fit (sin+cos), R%=0.752

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
time [s]



data + model fitting — more data

A}

! l\/\ ( f / il
g1 W
| * y ' *
5
| — data 1 complex sine with frequency 10.7 Hz
model fit R2=0.249
O.E)O 0.125 0.150 0.175 1.60 1.125 1.150 1.175

time [s]

2.00



data + model fitting — more data

amplitude

data 20 complex sines with frequency 5-15 Hz
model fit R*=0.558

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
time [s]



data + model fitting

amplitude

data 500 complex sines with frequency 0-250 Hz
model fit R<=1.000

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
time [s]
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concepts / different views

iInput
time series, N samples

computation output
—] | N coefficients for N/2
sinusoids

two views on the same procedure

statistical modeling

signal processing

e “multivariate linear model with e “Fourier transform”, a transform
complex sinusoids as regressors” iInto the spectral domain

* no degrees of freedom, no

* signhal representation, perfect

remaining residual — overfitting reconstruction possible

10



computation: Welch’s method

time series, cut into small segments

[nr_segments x nr_samples]

time series, multiplied with a
windowing function
[nr_segments x nr_samples]

spectra for each segment
[nr_segments x nr_frequencies]

average across frequencies to
obtain the spectrum
[1 X nr_frequencies]
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example output for real EEG data

AW MAN A v

2.0 -
10° 10°
1.5 1
- ® 101 @ 1071
a. (@) (@)
o o
0.5 - 1072 = 1072 =
0.0 -
510 20 30 40 510 20 30 40 10° 10!
frequency [Hz] frequency [Hz] log frequency [Hz]
linear-linear linear-log log-log

diffferent ways to show the same output of the spectral estimation
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methods: parameters in general

common spectral analysis
parameters

* length of data segments

 number of points per
segment

* percentage of overlap
* type of taper

What are the “correct” parameters?

Choice depends on analysis goal. Different
parameters enable flexibility in analysis.

If in doubt:

 starting point: take the ones from your elders /
previous literature

* change parameters and observe effects,
effects should be robust for similar parameters
— sensitivity analysis

e simulate!

13



methods: frequency resolution

* frequency resolution of the spectrum depends on the number of
used samples for each segment

Example frequency resolution
* segment length: 1s — 1 2 3 4 .. Hz
* segment length: 2s - 0.5 1 1.5 2 .. Hz

* segment length: 0.1s —» 10 20 30 40 .. Hz

14



methods: frequency resolution

* changing the settings how many samples per segment are used
determines frequency resolution.

0.1 s = samples per segment = 100
number of segments = 4000

n
=
)
£ 10°
O
» 102
10° = o) pe
3
o - £100 4 ————
A ; =z 102 10° 10* 10°
N : segment length
2 10°
10~
102

5 10 15 20 25 30 35 40 45
frequency [HZz]
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methods: frequency resolution

* changing the settings how many samples per segment are used
determines frequency resolution.

samples per segment = 250
number of segments = 1600

3 -

o
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1
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0
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N 10 / 102 10° 10% 10°

N : segment length
g 10"

10—1-5 \

5 10 15 20 25 30 35 40 45
frequency [HZz]

o

number of segments
-

16



methods: frequency resolution

* changing the settings how many samples per segment are used
determines frequency resolution.

samples per segment = 1000
number of segments = 400

9
I=
O
£ 10° -
O
® 102 -
1072 - o) o -
3
o - c10°04+——
A ; =z 102 10° 10* 10°
N : segment length
_83 100'§ -
10—1-§ /\/\
102

5 10 15 20 25 30 35 40 45
frequency [HZz]
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methods: frequency resolution

* changing the settings how many samples per segment are used
determines frequency resolution.

samples per segment = 4000
number of segments = 100

n
=
)
£ 10°
O
» 102
10° = o) pe
3
o - £100 4 ————
A ; =z 102 10° 10* 10°
N : segment length
2 10°
10~
102

5 10 15 20 25 30 35 40 45
frequency [HZz]
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methods: frequency resolution

* changing the settings how many samples per segment are used
determines frequency resolution.

samples per segment = 20000
number of segments = 20

)
=
O
£ 10°
O
» 102
102 - o) pe
3
o - c10°1, —
A ; z 10 10° 10* 10°
N : segment length
2 10°
10~
102

5 10 15 20 25 30 35 40 45
frequency [HZz]
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methods: frequency resolution

* changing the settings how many samples per segment are used
determines frequency resolution.

samples per segment = 80000
number of segments = 5

()]
€
()
£ 10°
()
» 1032
102 = o) pe
8
o - c10°+—
~ ' 2 102 103 10* 10°
N segment length
_83 100
101
102

5 10 15 20 25 30 35 40 45
frequency [HZz]
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methods: frequency resolution

* changing the settings how many samples per segment are used
determines frequency resolution.

samples per segment = 400000
number of segments = 1

o
w
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o
o

number of segments
-
N

102 10° 10* 10°

10~ .
107 9 | l““wmhﬂmmlm L

frequency [HZz]

21



methods: frequency resolution

* changing the settings how many samples per segment are used
determines frequency resolution.

samples per segment = 4000
number of segments = 100

n
=
)
£ 10°
O
» 102
10° = o) pe
3
o - £100 4 ————
A ; =z 102 10° 10* 10°
N : segment length
2 10°
10~
102

5 10 15 20 25 30 35 40 45
frequency [HZz]
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methods: taper / window function

window function
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window length [s]




methods: taper / window function

window function

1.0 -

0.8 -
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log power
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spectral domain

—— NOo Window
— Hann window

5 10 15

frequency [HZ]

20

spectral
leakage



methods: multitaper, goal: increase SNR

A) Time series data

Multitaper
—

>

B) Tapers

C) Data-tapers D) Powerspectra  E) Average spectra

—yr— Lo —
—Aaes— oy,
M=o =T e S
~WeM= o g —
olfsvrewny WA, —

time

time = freq = = freq

figuredrom: Mike X. Cohen — Analyzing Neural Time Series Data



other functions as factors?

triangular
basis functions

signal triangular reconstruction
3
: \h i
L
S5 0
= y spectral
£ -3 | “ analysis does
not explain
0 1 2 Nneuro-
time [s] physiological
generative
= mechanisms
-
Q.

frequency [HZ]
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spectral analysis
Interpretation
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high alpha-power

medium alpha-power

variability & oscillation power, example: EEG

low alpha-power

—— Subject A
subject B

—— subject C

subject D

subjects

—— subject E

950 - l
, illlllllli
1 2

alpha-power
(1/f-corrected)

subject F

10 20 30
frequency [Hz]

10 20

frequency [Hz]

10 20 30
frequency [Hz]

Oscillations are variable across participants.

28




measure: oscillation frequency & power

power

2 10 i

20
frequency (Hz)

25 30

Donoghue, Schaworonkow, Voytek
European Journal of Neuroscience (2021)

Frequency (Hz) [FCN-2017 Glossary
Delta 0.1-<4

Theta 4-<8

Alpha 8-13

Beta 14-30

measure: phenomenon:

“alpha-frequency”

29

“alpha-rhythm”



pitfalls: frequency changes across frequency boundaries

e oObservation:

95 participants, 582 sessions, data: Henry (1944)

oscillation frequency 1o

changes drastically
over the course of
development

—h
N
|

—
A\
|

* here posterior
dominant rhythm,
human EEG

—
o
|

occipital alpha frequency [Hz]

——  0del fit

DN

2 4 6 8 10 12 14 16 18
age [years]




pitfalls: frequency changes across frequency boundaries

e oObservation:

95 participants, 582 sessions, data: Henry (1944)

oscillation frequency 1o

changes drastically
over the course of
development

—h
N
|

—
A\
|

* here posterior
dominant rhythm,
human EEG

—
o
|

alpha-rhythm?

3 pha frequenpy [Hz]

theta-rhythm?

measure: “theta-
frequency”

measure: “alpha-
frequency”

——  0del fit

posterior . dominant

rhy thm

DN

4 6 8 10 12 14 16 18
age [years]



non-rhythmic contributions, 1/f-activity

infant EEG activity (age = 2 months) adult EEG activity
channel PO3 channel PO3

W""V'WJ\AN‘W\*WM —— infant
/\W’“”‘MWW’J\ —— adult

W/W 510 20 30

0 > 3 4 5 0 1 > 3 4 5  frequency [Hz]

Schaworonkow & Voytek
31 Developmental Cognitive Neuroscience (2021)



non-rhythmic contributions, 1/f-activity

10° 10!
log frequency [HZz]

o 1/f-activity:
power scales with frequency
scale free dynamics

log power [a. u.]

100 100 102
32 log frequency [HZ]



pitfalls: not only rhythmic changes + rhythms can be absent

“delta-power”

“theta-power”

“alpha-power”

“beta-power”

33



pitfalls: not only rhythmic changes + rhythms can be absent

activity

“delta-power”

“theta-power”

“alpha-power”

“beta-power”

33



pitfalls: not only rhythmic changes + rhythms can be absent

g I

“delta-power”

“theta-power”

“alpha-power”

“beta-power”
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pitfalls: not only rhythmic changes + rhythms can be absent

activity

“delta-power”

“theta-power”

“alpha-power”

“beta-power”

33



new measures needed?

®

log power

approach 1:
total band power

measure:
“alpha-power”

frequency [Hz]

measure:
“q1/f-corrected
alpha-power”

34

approach 2:
1/f-corrected band power

log power

2 5 10 25 50
frequency [Hz]

1/f-corrected alpha power =
Improved way to measure
oscillatory contribution more
specifically?

100



new measures needed?

Two ways to plot the same result:

changes between 2
conditions in terms of 1/1-
exponent

changes between 2
conditions per frequency

band
0.2
0.0
o
3
o —-0.2
| A —-0.4
; o) 6 a B Y

10 20 30 40 50

frequency (Hz) frequency bands

Donoghue, Schaworonkow, Voytek

3 European Journal of Neuroscience, 2021



same summary measures, different signal generation

Time

Time

36

Single Trials

‘ Average

Frequency

Single Trials

Frequency

‘ Average

Frequency

Frequency

figure from: Palva & Palva
Neurolmage, 2012



phenomenon: amplitude modulation

* neural rhythms show amplitude modulation.

/”
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effects of amplitude modulation on spectrum

 amplitude modulation can contribute to a broadened spectral peak.

time domain spectral domain
T 10 Hz
sine-function _
LAAEUEAARAREAARARARRNALAY w«-«-'l L%
T ohulated
VV\/\/\/\/\M MHW\/\M Sign; i
/| IV sine « sinc
| ”mew“ | | I /\

.
0.100 Hz |
sinc-function \
— T

—1 0 1 0 5 10 15
time [s] frequency [HZz]
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effects of amplitude modulation on spectrum

 amplitude modulation can contribute to a broadened spectral peak.

time domain spectral domain

AR AR AL

H 10 Hz
sine-function  _
ALAEEARREARRARVAARNAARRAARY M-—'J L“

amplitude-

modulated
MWW signal -
u sine = sinc / &

—
’\/\/ 0.280 Hz ]
sinc-function \

—1 0 1 0 5 10 15
time [s] frequency [HZz]
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higher frequency spectral peaks

verify presence of peak

100; identify frequency of peak in beta-band

» additional spectral peaks in higher
beta-band frequency bands: genuine rhythms or
harmonic contributions?

510 20 30 40
frequency [Hz]

40



10

20
frequency [HZ]

30

pitfalls: waveform shape & spectral peaks

* ndividual spectral

peaks #
Independent
rhythms

* non-sinusoidal

waveforms —
harmonic peaks In
the spectrum.



example: non-sinusoidal waveform in ECoG data

log PSD

20 40 0.00 025 050 0.75 1.0
frequency [Hz] peak-trough asymmetry
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waveform shape & spectral peaks: concepts

non-sinusoidal
waveform shape +
distinct oscillators

distinct non-sinusoidal
oscillators waveform shape

43



what about phase?

log PSD

log PSD

0 10 20 30
0 10 20 30
frequency [HZz]

same spectrum - different time domain signals: the power

spectrum only captures a part of the available information

0.25

0.50

0.00
0.00 0.25 0.50
time [s]
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what about phase?

log PSD

log PSD

0 10 20 30
0 10 20 30
frequency [HZz]

same spectrum - different time domain signals: the power

spectrum only captures a part of the available information

0.25

0.50

0.00
0.00 0.25 0.50
time [s]
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time-frequency
analysis




motivation

| o—
- —
p -
+—

e How to assess
temporal dynamics
across a trial?

| | | | T | |

-3 —2 —1 0 1 2 3 4
time relative to open eyes instruction [s]

|

— time-frequency

representation! (TFR)

I I I

10 20 30 4
frequency [Hz] 46



computation

time series, cut into small segments
[nr_segments x nr_samples]

time series, multiplied with a
windowing function
[nr_segments x nr_samples]

spectra for each segment
[nr_segments x nr_frequencies]

average across fret€
obtain the spectrum
[1 X nr_frequencieg

%3




computation

time series, cut into small segments
[nr_segments x nr_samples]

time series, multiplied with a
windowing function
[nr_segments x nr_samples]

spectra for each segment
[nr_segments x nr_frequencies]

rotate by 90 degrees
stack spectra from segments
& plot in color

frequency [HZ]

— time-frequency representation

= N N W
oo o O O

10
5

oot e 1 BT TR L R TR e T R R A

90 100 150 200 250 300 350 400
time([s]

o

log power spectral density

LoL
N O
o

A
o
o

-17.5



example output for MEG data

* rich spectral power
(A) Contralateral Motor Cortex dynarﬁics in (E])ifferent

40 : ' ' ' ' i frequency bands

35

o often, a baseline/
normalization procedure
or contrast is employed.

Beta ERD Beta ERS

A

W
o

0.5

N
N
t-value

Frequency (Hz)
S

-
o

b
a_

—
o

—_—

g Mu ERD
baseline active active-post
-1.5 -1 0.5 0 0.5
Time (sec) A famination

48 figure from: Jurkiewicz et al. (2006)



methods: parameters

Frequency [HZ]

* influence of parameters: window length / number of cycles

M?sk Stlm.o=nset STET W=230 ms W=432 ms
140
100
60

N
o

4 figure from: Moca et al. (2021)



methods: parameters

 different approaches for selecting segment length

fixed window length segment length changes
a) no matter the frequency b) with frequency
AF
> >
O O
- -
) O
- -
o o
AF I
AT AT
time time

figure from:
50 https://www.fieldtriptoolbox.org/tutorial/sensor/timefrequencyanalysis



https://www.fieldtriptoolbox.org/tutorial/sensor/timefrequencyanalysis

methods - inter-trial coherence

 phase information from the time-frequency representation can be used to
investigate inter-trial coherence (ITC)

inter-trial coherence for changing temporal shift between trials

100

80

: phase distribution
60 | - for time=0
ITC=1.00

trials

40

20




methods - inter-trial coherence

e comparing ITCs of two different trial
groups

e research question: does oscillation phase
matter for perception of phosphenes?
“optimal phase”

e two trial groups: phosphenes perceived
vs phosphenes not perceived

 compute ITC for both conditions
* check if statistically different

 inference: oscillatory phase influences
whether participants perceive a
phosphene

52 figure from: Fakche et al. (2022)



concepts: evoked vs. induced

» order of operations
matters

D D D D O

. . A
single trials | N
1 0 . ‘A | _
I _ | _
- I\ —
I AV
N AV
I NI
I ﬁ i N ~—
 I— -
5 — —
N i — | ; -
event onset |
e~ ‘= s ~
Y 4 ) 2
Y 4 A}
! 4 )\ }
averaged ERPs 1 '
| I’ |
! R !
A o !
same-phase: '« v .

Cam-

persistent activit37 CSam=

figure from: B. Ehinger:
https://www.s-ccs.de/teaching-resources/open-teaching-graphics/Induced-Evoked/

./ random-phase:
interference


https://www.s-ccs.de/teaching-resources/open-teaching-graphics/Induced-Evoked/

concepts: oscillations vs. evoked responses

AEP

* time-frequency representation
of an evoked response shows
a peak in the theta frequency
band = genuine rhythms

— TFR on its own Is

wnJ12adg

agnhostic about
generative mechanisms!

figure from: Gourévitch et al.,
Neuroscience and Biobehavioral
> Reviews (2020)



volume conduction




power spectra across channels — data

° Channels are not independent 1504 .............. .............. ............... ............... ‘

 different signal contributions will
overlap and result in multiple
spectral peaks
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. ‘ ‘ . . . . A\ = A
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Frequency (Hz)
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volume conduction - simulation

57



EEG is a mixture of different signhals — data

0 10 20 30 40
frequency [HZz] time [s]



EEG is a mixture of different signals — data

Fp1
Fz
C1
C5

CP3
P3

O1

component time series
EEG time series thetal - 10 % added... EEG spectrum

FZ NN e i NN ANt o NN o gt TN
C1 o R 5 10 20 30 40
CF — iyt ety b i v W component spectrum

@

1 2 0 1 2 5 10 20 30 40
time [s] time [s] frequency [Hz]
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EEG is a mixture of different signals — simulation
B occipital

parietal
sensorimotor
temporal

observed spectral
peak could come
from a region far far
away from the
electrode.

left hemisphere [FNINS

right hemisphere

3D head model,
EEG electrodes
& alpha sources

alpha rhythm contributions
eyes closed

®  figure from: Schaworonkow & Nikulin Neurolmage (2022)



how do auditory sources end up on Cz? - simulation

e depending on structure +
dynamics, activation can show
up on sensor locations that are
very far away from source
locations

am ol

EEG

tomorrow: source electrodes

estimation lectures +
hands on!
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computation

Fourier

Transform frequency
resolution

Welch’s
Method
Inter-
trial
coherence
time-
frequency

representation

Interpretation

amplitude

oscillations modulation

harmonics/
waveform
shape

generative
model of
M/EEG

volume
conduction

spatial
patterns



