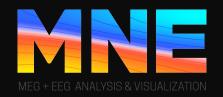
Reporting results with confidence II Multivariate approach



Marijn van Vliet 31 October 2025

Summary

- Uses for multivariate analysis
- 2. What machine models do: regression & classification
- 3. The curse of dimensionality, overfitting, & cross-validation
- 4. Spatial filtering, decoding across time
- 5. Determining statistical significance of the result
- 6. Interpreting the model: weights vs patterns
- 7. Representational spaces: tracking information content

Summary

- 1. Uses for multivariate analysis
- 2. What linear machine models do: regression & classification
- 3. The curse of dimensionality, overfitting, & cross-validation
- 4. Spatial filtering, decoding across time
- 5. Determining statistical significance of the result
- 6. Interpreting the model: weights vs patterns
- 7. Representational spaces: tracking information content

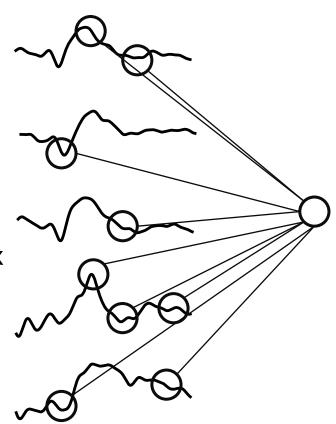
Multivariate means combining multiple data points into a single value

We have already seen some examples:

- Independent component analysis (ICA)
- Source estimation
- Averaging across a region of interest (ROI)
- General linear model (GLM) with design matrix

In this lecture we will focus on:

- Machine learning
 - Estimating the best way to combine data points to achieve some stated goal.



Applications of machine learning in EEG/MEG data analysis

Automated decision making:

- Brain-computer interfaces (BCI)
- Biomarkers / diagnostics



Applications of machine learning in EEG/MEG data analysis

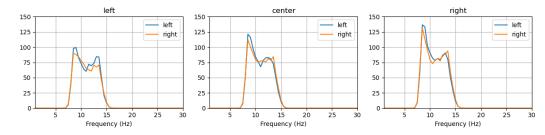
Automated decision making:

- Brain-computer interfaces (BCI)
- Biomarkers / diagnostics

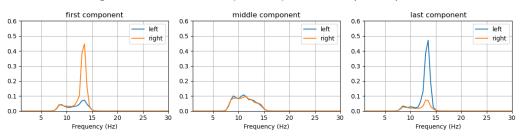
Filtering

Isolating informative signal components

Imagined movement. Three EEG electrodes:



After filtering with common spatial patterns (CSD):



source: BCI competition IV data, Berlin BCI group

Applications of machine learning in EEG/MEG data analysis

Automated decision making:

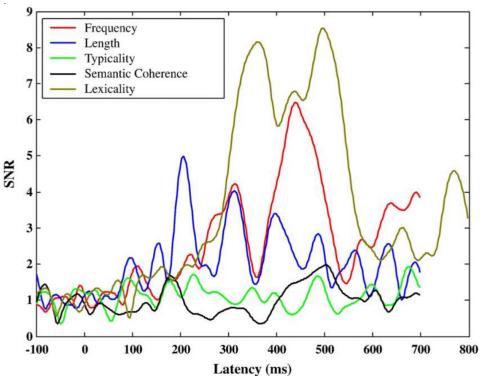
- Brain-computer interfaces (BCI)
- Biomarkers / diagnostics

Filtering

Isolating informative signal components

Information-based analysis

When/where is information about X present in the signal?

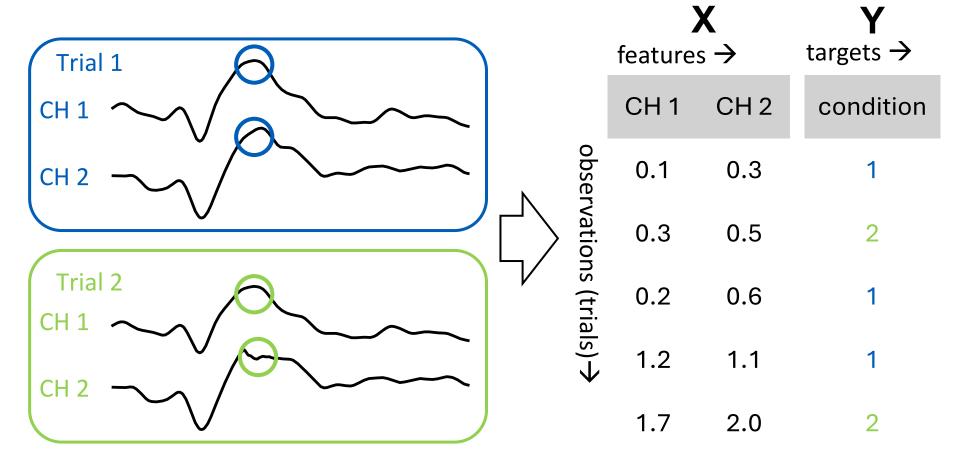


Hauk et al., NeuroImage 2005

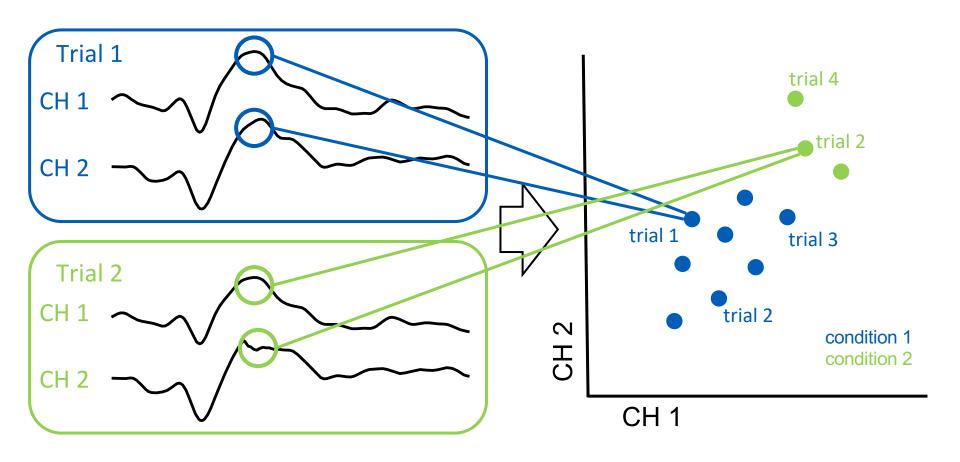
Summary

- Uses for multivariate analysis
- 2. What linear machine models do: regression & classification
- 3. The curse of dimensionality, overfitting, & cross-validation
- 4. Spatial filtering, decoding across time
- 5. Determining statistical significance of the result
- 6. Interpreting the model: weights vs patterns
- 7. Representational spaces: tracking information content

How machine learning sees your data



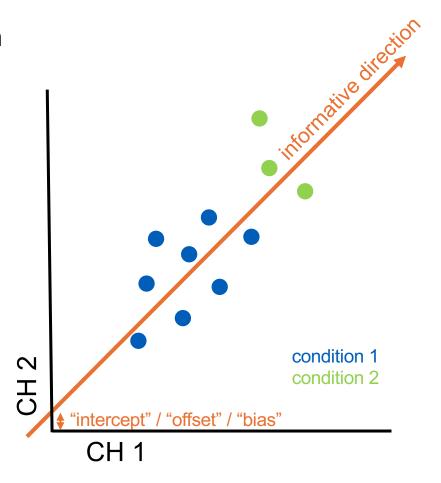
How machine learning sees your data



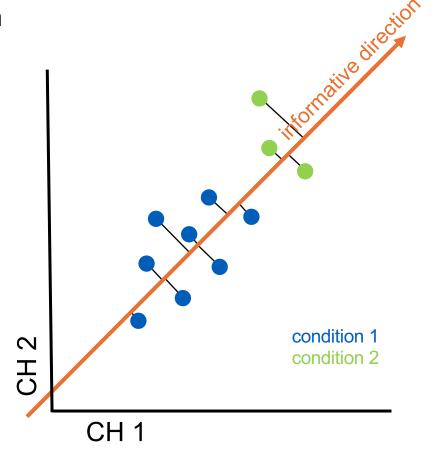
 Find most informative direction = regression weights

many different algorithms for this:

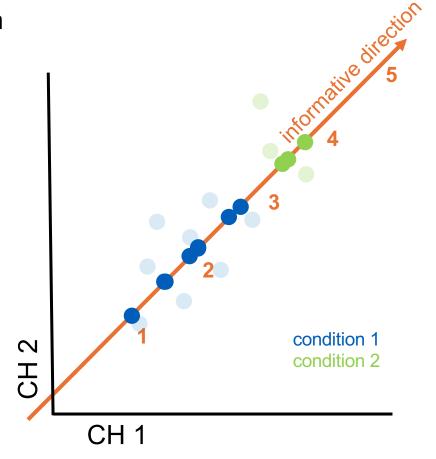
- Regression:
 - Ordinary Least Squares (OLS)
 - Ridge Regression
- Classification:
 - Logistic Regression (LR)
 - Support Vector Machine (SVM)
 - Linear Discriminant Analysis (LDA)
- ...and many more



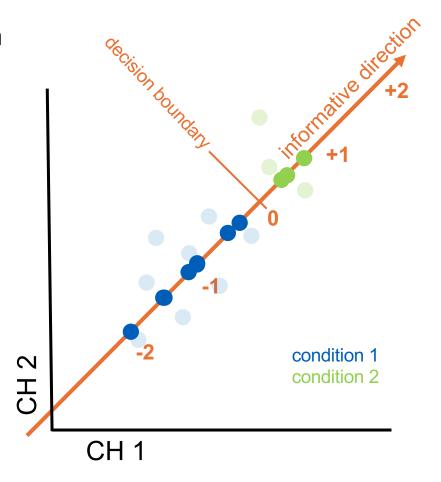
- Find most informative direction = regression weights
- 2. Project data onto this line



- 1. Find most informative direction = regression weights
- 2. Project data onto this line
- Regression result is position along the line



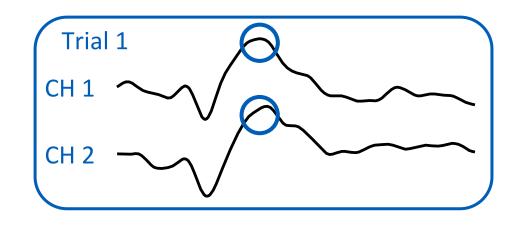
- 1. Find most informative direction= regression weights
- 2. Project data onto this line
- 3. Regression result is position along the line
- For binary classification: draw decision boundary, call this position "0"



Summary

- Uses for multivariate analysis
- 2. What linear machine models do: regression & classification
- 3. The curse of dimensionality, overfitting, & cross-validation
- 4. Spatial filtering, decoding across time
- 5. Determining statistical significance of the result
- 6. Interpreting the model: weights vs patterns
- 7. Representational spaces: tracking information content

Two channels, one time points 2 columns = 2 features = 2 dimensions



X features →

	icatures	
	CH 1	CH 2
obser	0.1	0.3
vation	0.3	0.5
observations (trials) $ ightarrow$	0.2	0.6
als)→	1.2	1.1
	1.7	2.0

Two channels, ten time points $2 \times 10 = 20$ features/dimensions

features →

X

<u>o</u>	C1, T1	C2,T 1	C1,T 2	C2,T 2	C1,T 3	C2,T 3	C1,T 4	C2,T 4	C1,T 5	C2,T 5	C1,T 6	C2,T 6	C1,T 7	C2,T 7	C1,T 8	C2,T 8	C1,T 9	C2,T 9	C1,T 10	C2,T 10
observations																				
vatio																				
sac																				
(trials)-																				
s) →																				
Ť																				

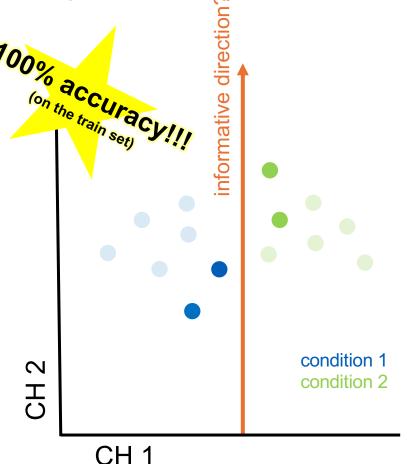
If you have few observations relative to the number of features, performance will seem amazing!

This is called "over-fitting"

Always split your data into separate "train" and "test" sets!

Cross-validation:

- 1. Split data into *k* sets
- 2. Use 1 set as test set and the other *k*-1 sets combined as train set (="fold")
- 3. Use average accuracy across all folds.



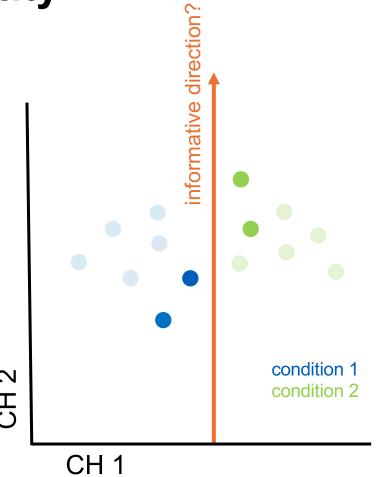
Ideally, you have many more observations than features.

In practice, we often don't:

For example: 64 channels x 100 time points = 6 400 features we don't have >> 6 400 trials

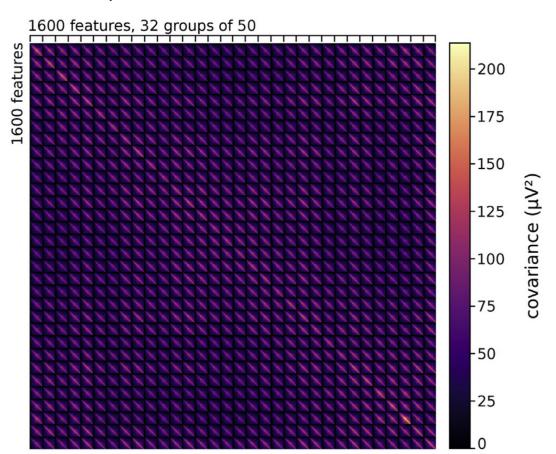
Solutions:

- Downsampling, binning
- Spatial filtering to one channel
- Use subset of data, e.g. decoding over time
- Regularization (almost always a good idea)



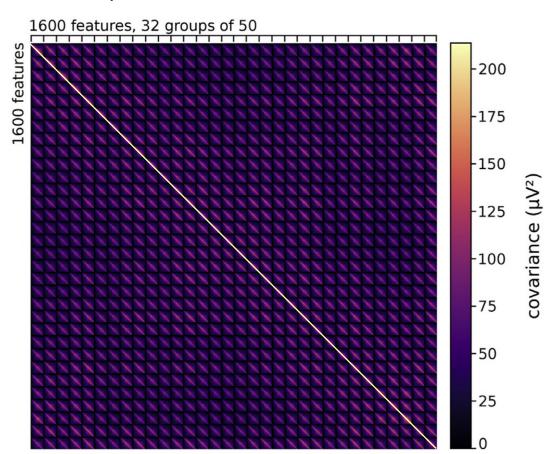
Regularization of the co-variance matrix

1 trial = 32 channels, 50 time points = 1600 features



Regularization of the co-variance matrix

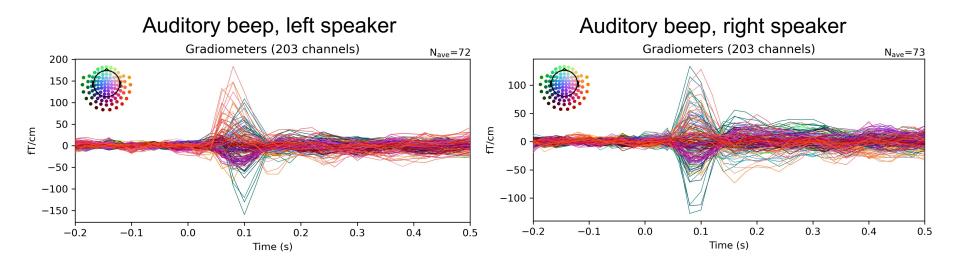
1 trial = 32 channels, 50 time points = 1600 features



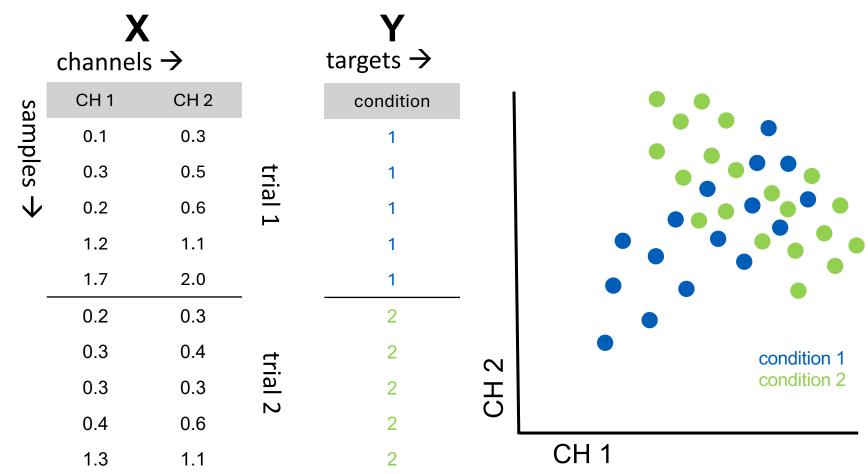
Summary

- Uses for multivariate analysis
- 2. What linear machine models do: regression & classification
- 3. The curse of dimensionality, overfitting, & cross-validation
- 4. Spatial filtering, decoding across time
- 5. Determining statistical significance of the result
- 6. Interpreting the model: weights vs patterns
- 7. Representational spaces: tracking information content

MNE-Python Sample Dataset

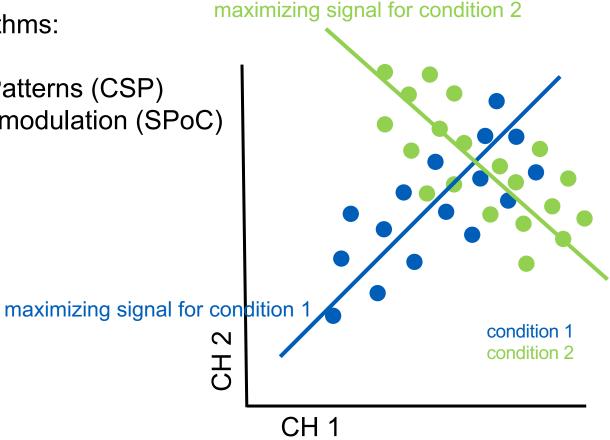


Goal: find a mixture of channels that is informative of the left vs right condition



Some example algorithms:

- Common Spatial Patterns (CSP)
- Source Power Co-modulation (SPoC)
- LDA Beamformer



Time (s)

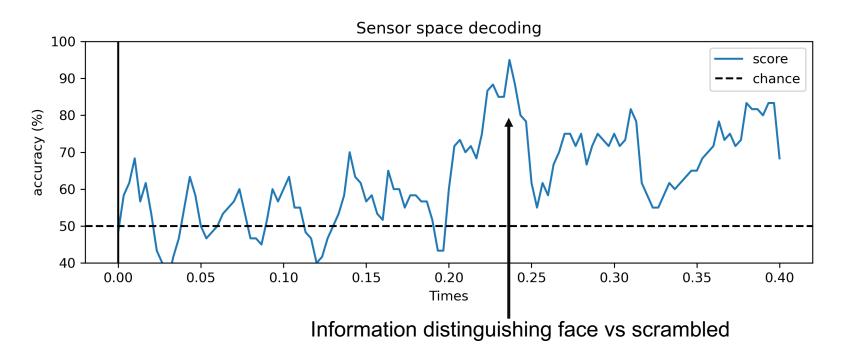
LDA beamformer right speaker left speaker Gradiometers (203 channels) Gradiometers (203 channels) $N_{ave} = 72$ $N_{ave} = 73$ 200 150 100 100 50 50 fT/cm fT/cm -50-50 -100-100-1500.4 0.0 0.1 0.2 0.3 -0.2-0.10.0 0.1 0.2 0.3 0.4 0.5 -0.2-0.10.5 Filtered for left Filtered for right Filtered for contrast 8.0 8.0 0.4 left right 0.6 0.6 0.2 0.4 0.4 0.0 0.2 0.2 0.0 -0.20.0 -0.2 -0.2 -0.2 0.4 0.5 -0.10.0 0.0 0.2 0.3 0.4 0.5 -0.10.0 0.1 0.3 0.1 0.2 0.3 0.4 0.5 -0.2 -0.10.1

Time (s)

Time (s)

Decoding across time

- 204 channels (the gradiometers) x 1 time point
- Separate model for each time point (logistic regression)
- 5-fold cross-validation



Summary

- 1. Uses for multivariate analysis
- 2. What linear machine models do: regression & classification
- 3. The curse of dimensionality, overfitting, & cross-validation
- 4. Spatial filtering, decoding across time
- 5. Determining statistical significance of the result
- 6. Interpreting the model: weights vs patterns
- 7. Representational spaces: tracking information content

Decoding the Wakeman & Henson data

- Face versus Scrambled, binary classification
- Linear Discriminant Analysis (LDA) as machine learning algorithm
- 204 channels (the gradiometers) x 121 time points
- 5-fold cross-validation
- Just for sub-01

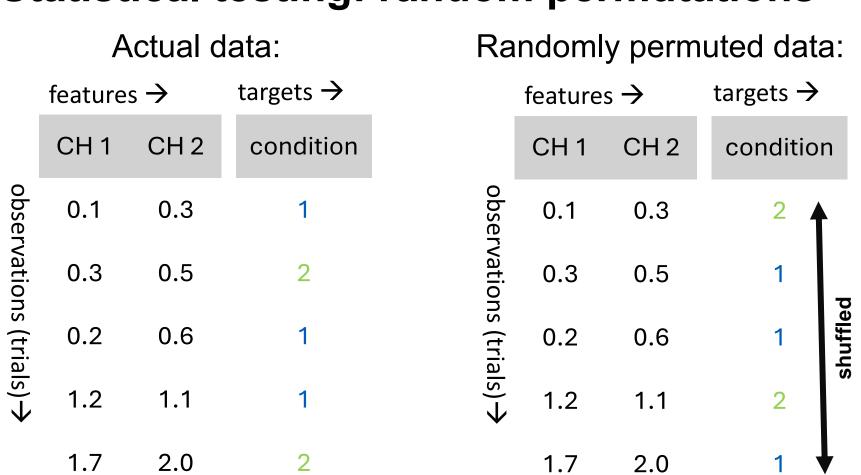
Accuracy (mean across 5 folds): 65%

(this is terrible, a Logistic Regression classifier will do much better)

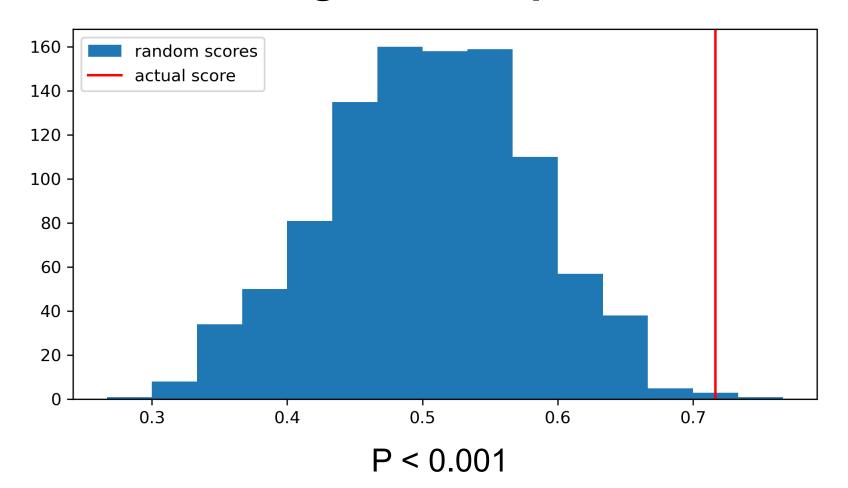
Questions:

- 1. Is our accuracy statistically significantly better than chance (=50%)?
- 2. What information did our machine learning model use?

Statistical testing: random permutations



Statistical testing: random permutations

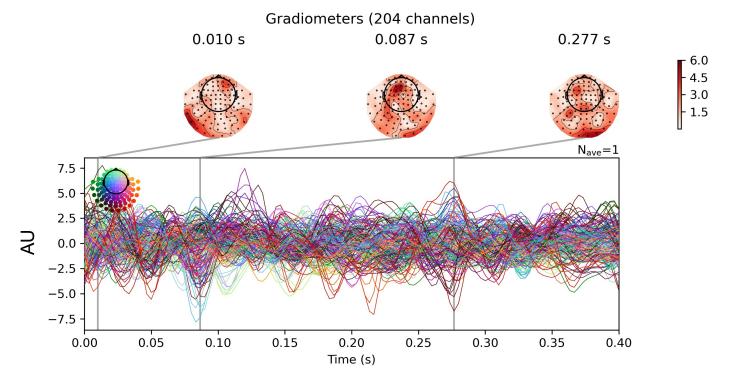


Summary

- 1. Uses for multivariate analysis
- 2. What linear machine models do: regression & classification
- 3. The curse of dimensionality, overfitting, & cross-validation
- 4. Spatial filtering, decoding across time
- 5. Determining statistical significance of the result
- 6. Interpreting the model: weights vs patterns
- 7. Representational spaces: tracking information content

Visualizing regression weights

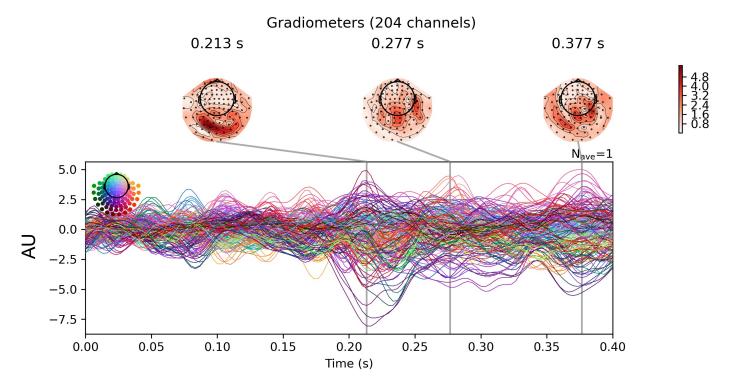
Plotting the weights as if they were an evoked response:



large weight ≠ contains useful information (face vs. scrambled)

Visualizing patterns

 $P = cov(X) W cov^{-1}(Y)$ see: Haufe et al. Neurolmage (2014)

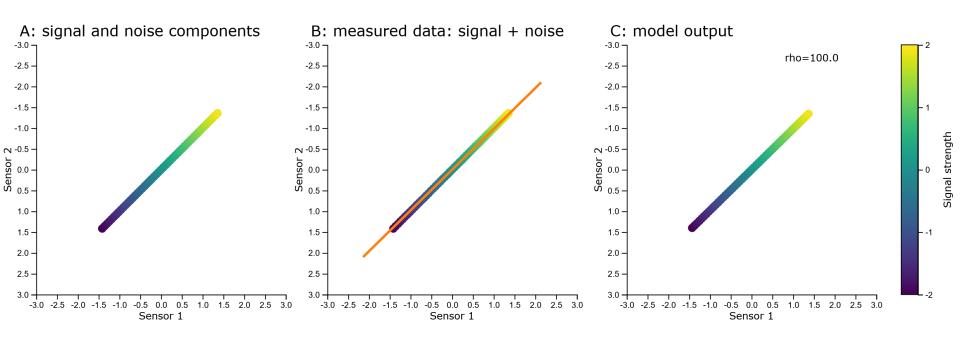


large pattern = contains useful information (face vs. scrambled)

Interactive explanation of weights vs patterns

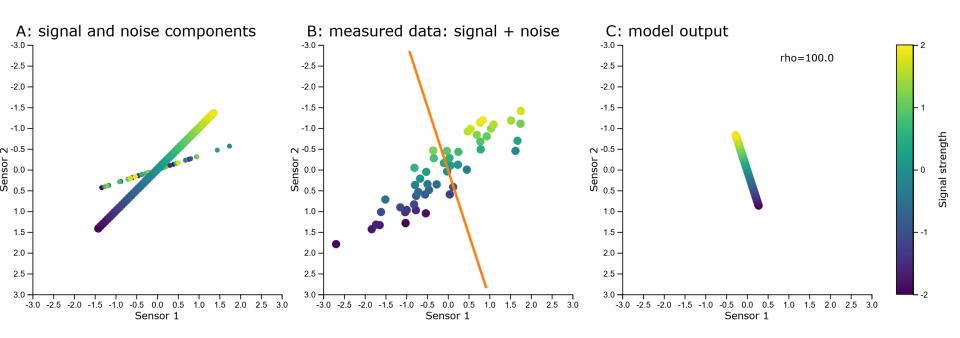
https://users.aalto.fi/~vanvlm1/posthoc/regression.html

Interactive explanation of weights vs patterns



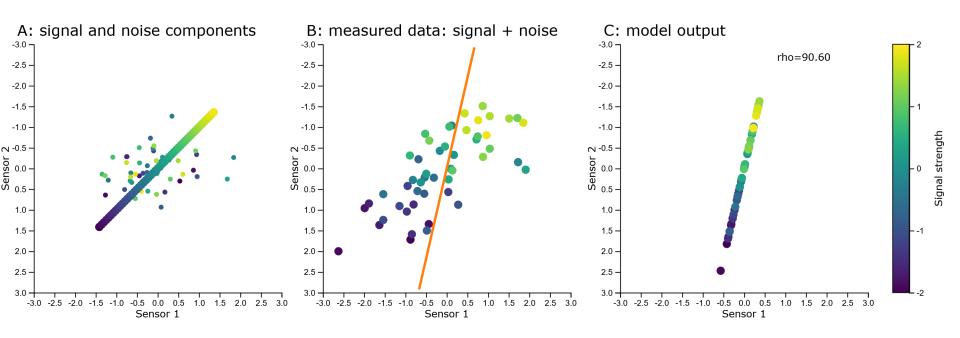
Only the informative component is present in the data

Interactive explanation of weights vs patterns



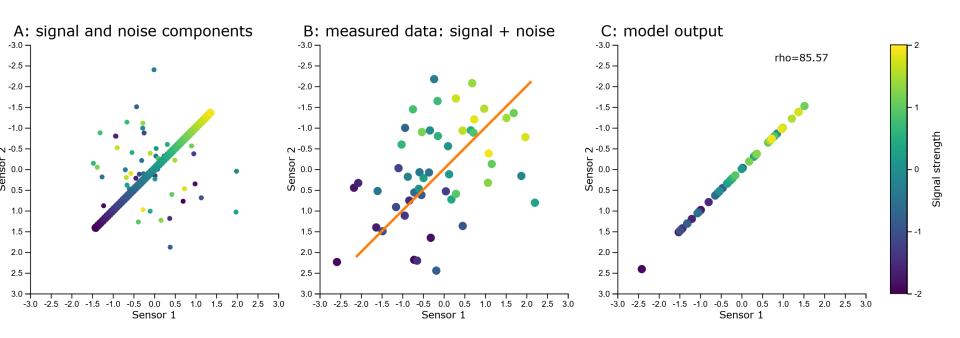
A second, uninformative brain component is also present

Interactive explanation of weights vs patterns



Multiple uninformative components are present

Interactive explanation of weights vs patterns



The uninformative components ("noise") is spherical

Summary

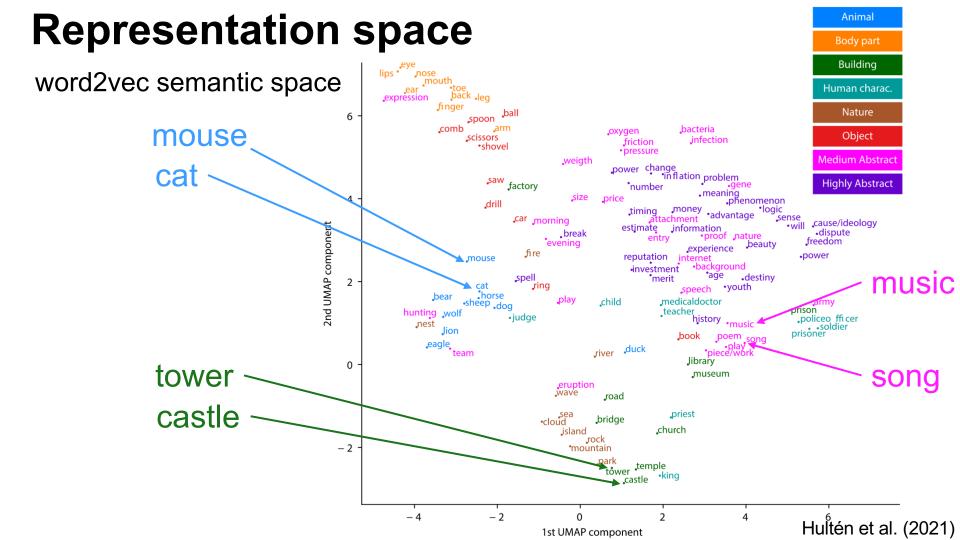
- Uses for multivariate analysis
- 2. What linear machine models do: regression & classification
- 3. The curse of dimensionality, overfitting, & cross-validation
- 4. Spatial filtering, decoding across time
- 5. Determining statistical significance of the result
- 6. Interpreting the model: weights vs patterns
- 7. Representational spaces: tracking information content

Representational space

MNIST pixel space

The **MNIST database** is a large dataset of handwritten digits, collected by the US Census Bureau.

https://projector.tensorflow.org



wapping brain $\leftarrow \rightarrow$	representation space
X (brain data)	Y (representation spa

CH 5

0.9

9.5

1.0

1.2

4.3

features →

CH₁

0.1

0.3

0.2

1.2

1.7

observations (stimuli)→

CH 2

0.3

0.5

0.6

1.1

2.0

CH 3

5.2

3.7

1.2

8.3

2.9

CH 4

5.1

7.6

2.1

4.2

7.6

wapping	brain	$\leftarrow \rightarrow$	represent	ation space
2.7.7.		•	3.7. <i>1</i>	4 4 =

Mapping brain ←→ repre	sentation space
------------------------	-----------------

features →

dim 2

5.2

2.4

4.3

2.7

8.4

dim 3

3.6

2.5

6.7

3.5

7.8

dim 4

3.5

3.8

2.8

4.3

6.6

dim 5

3.7

3.8

5.3

2.8

8.3

dim 1

0.5

2.6

1.4

1.9

2.1

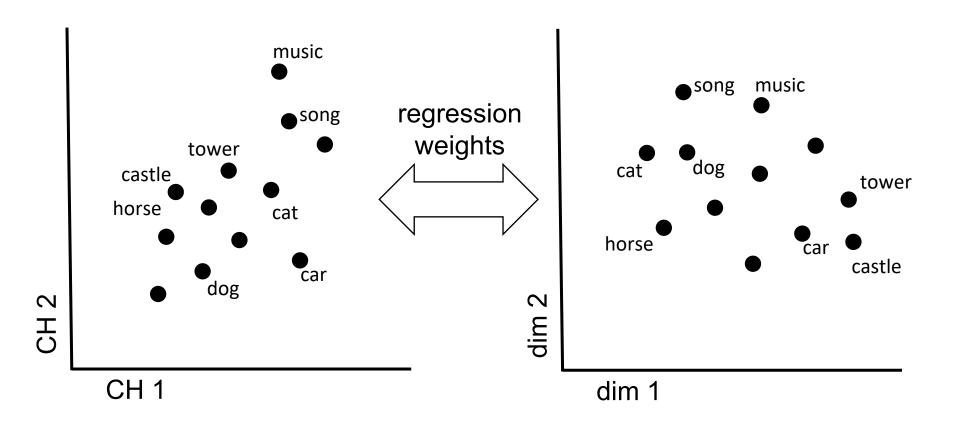
Mapping brain ←→ r	representation space
--------------------	----------------------

Mapping brain ← -	representation space
-------------------	----------------------

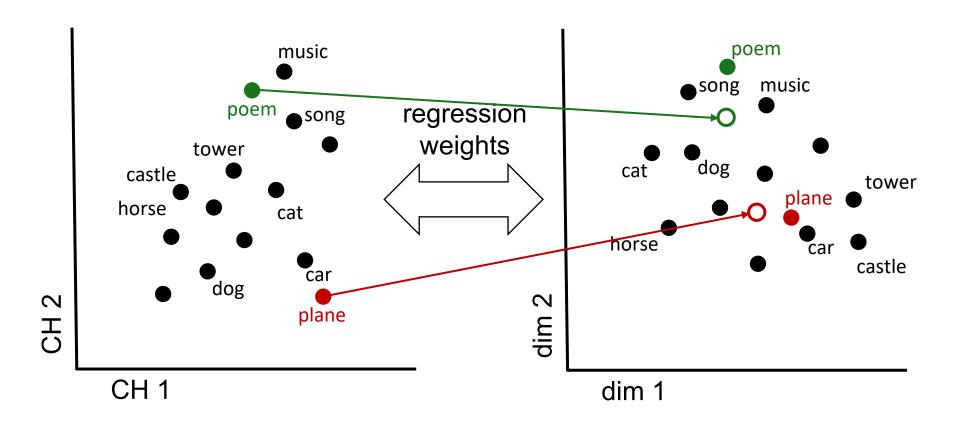
Mapping bra	ain ←→	representation	space
-------------	--------	----------------	-------

epresentation space
(

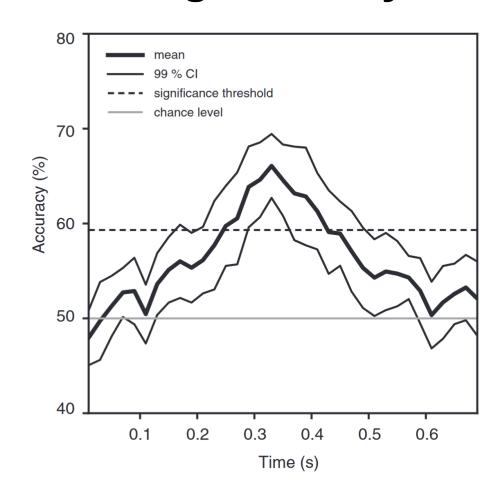
Mapping brain $\leftarrow \rightarrow$ representation space



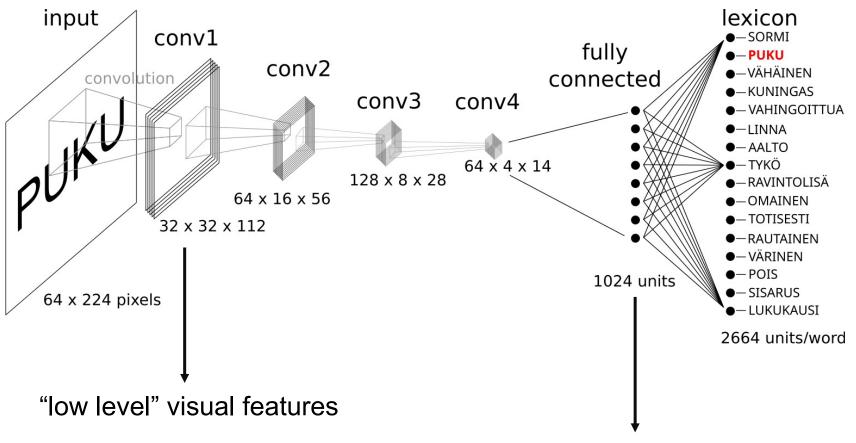
Mapping brain $\leftarrow \rightarrow$ representation space



Decoding accuracy over time

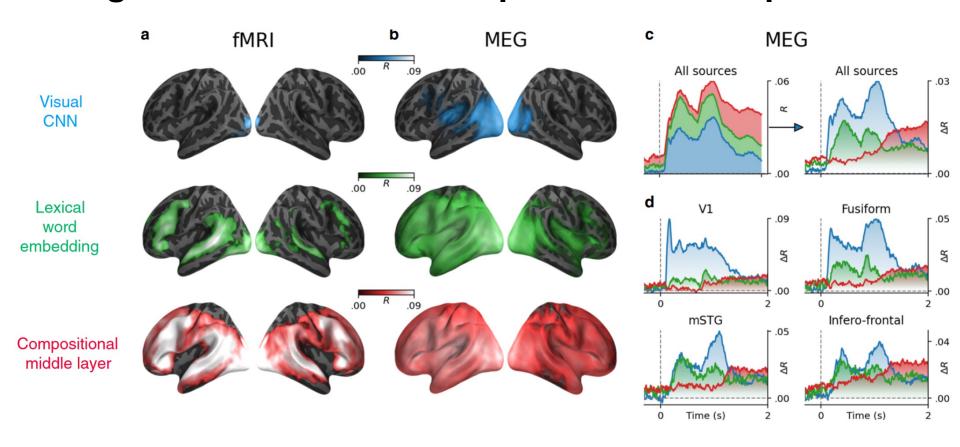


Using AI models to create representational spaces



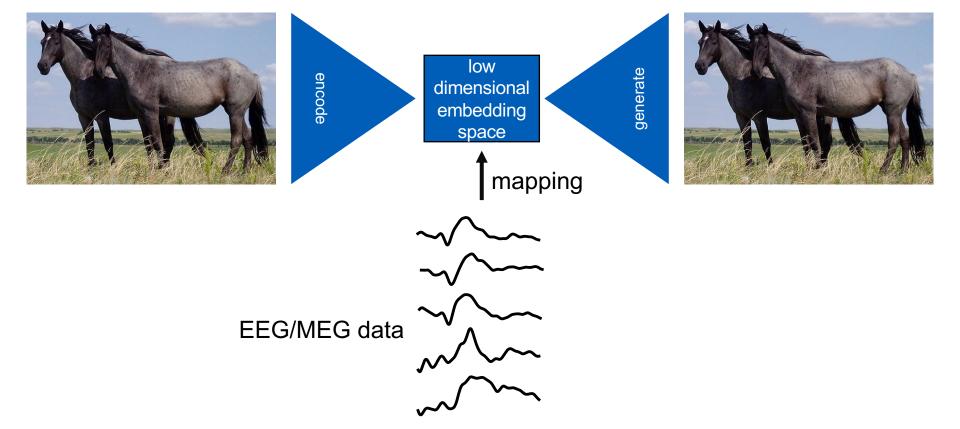
"high level" visual features

Using AI models to create representational spaces

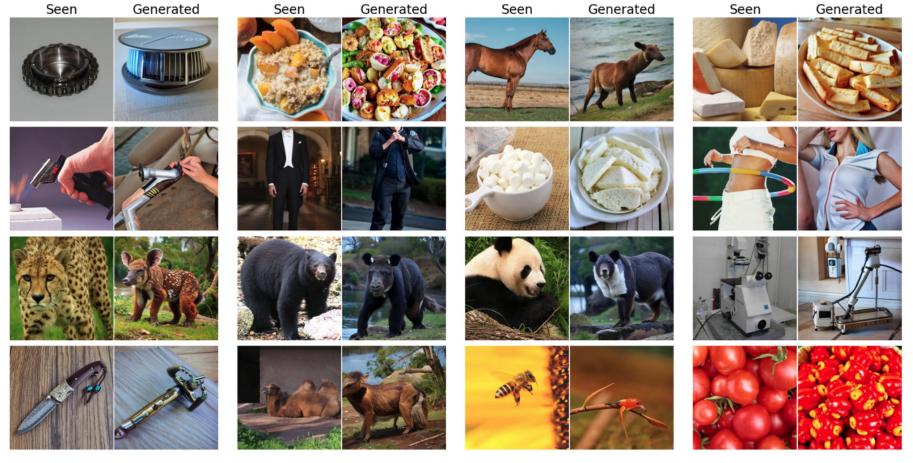


Caucheteux & King (2022)

Mapping brain activity to the inner layer of an autoencoder



Mapping brain activity to the inner layer of an autoencoder



Benchetrit et al. (2024)

Take-aways

- 1. Multivariate analysis tracks information content
- 2. Machine learning sees your data as a **cloud of points**
- 3. More **observations** is always better, more **features** may not be
- 4. Always isolate your **train** and **test** sets
- 5. Use **random permutations** to determine statistical significance
- 6. Visualize and interpret **patterns**, not weights
- 7. You can map **brain patterns** to **embedding spaces**