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Multivariate means combining multiple data 
points into a single value
We have already seen some examples:
• Independent component analysis (ICA)
• Source estimation
• Averaging across a region of interest (ROI)
• General linear model (GLM) with design matrix

In this lecture we will focus on:
• Machine learning

• Estimating the best way to combine data points to 
achieve some stated goal.
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• Biomarkers / diagnostics
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• Brain-computer interfaces (BCI)

• Biomarkers / diagnostics

Filtering
Isolating informative signal components

Imagined movement. Three EEG electrodes:

After filtering with common spatial patterns (CSD):

source: BCI competition IV data, Berlin BCI group



Applications of machine learning in 
EEG/MEG data analysis

Automated decision making:
• Brain-computer interfaces (BCI)

• Biomarkers / diagnostics

Filtering
Isolating informative signal components

Information-based analysis
When/where is information
about X present in the signal?

Hauk et al., NeuroImage 2005
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How machine learning sees your data
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How machine learning sees your data
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Linear regression and classification

condition 1
condition 2

1. Find most informative direction
= regression weights

many different algorithms for this:
• Regression:

• Ordinary Least Squares (OLS)
• Ridge Regression

• Classification:
• Logistic Regression (LR)
• Support Vector Machine (SVM)
• Linear Discriminant Analysis (LDA)

• …and many more
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“intercept” / “offset” / “bias”



Linear regression and classification

condition 1
condition 2

1. Find most informative direction
= regression weights

2. Project data onto this line
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Linear regression and classification

condition 1
condition 2

1. Find most informative direction
= regression weights

2. Project data onto this line
3. Regression result is position 

along the line
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Linear regression and classification
1. Find most informative direction

= regression weights
2. Project data onto this line
3. Regression result is position 

along the line
4. For binary classification:

draw decision boundary, call 
this position “0”

decision boundary

condition 1
condition 2
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The curse of dimensionality
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The curse of dimensionality
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The curse of dimensionality

condition 1
condition 2

If you have few observations relative 
to the number of features, 
performance will seem amazing!

This is called “over-fitting”

Always split your data into separate 
“train” and “test” sets!

Cross-validation:
1. Split data into k sets
2. Use 1 set as test set and the other k-1 

sets combined as train set (=“fold”)
3. Use average accuracy across all folds.
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100% accuracy!!!

(on the train set)



The curse of dimensionality

condition 1
condition 2

Ideally, you have many more 
observations than features.

In practice, we often don’t:
For example:
64 channels x 100 time points = 6 400 features
we don’t have >> 6 400 trials

Solutions:
• Downsampling, binning
• Spatial filtering to one channel
• Use subset of data, e.g. decoding over time
• Regularization (almost always a good idea)

in
fo

rm
at

iv
e 

di
re

ct
io

n?

CH 1
C

H
 2



Regularization of the co-variance matrix
1 trial = 32 channels, 50 time points = 1600 features



Regularization of the co-variance matrix
1 trial = 32 channels, 50 time points = 1600 features
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Spatial filtering
MNE-Python Sample Dataset

Auditory beep, left speaker Auditory beep, right speaker

Goal: find a mixture of channels that is informative of the left vs right condition



Spatial filtering
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Spatial filtering

condition 1
condition 2
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Some example algorithms:

• Common Spatial Patterns (CSP)
• Source Power Co-modulation (SPoC) 
• LDA Beamformer

maximizing signal for condition 1

maximizing signal for condition 2



Spatial filtering
LDA beamformer

left speaker right speaker



Decoding across time
• 204 channels (the gradiometers) x 1 time point
• Separate model for each time point (logistic regression)
• 5-fold cross-validation

Information distinguishing face vs scrambled
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Decoding the Wakeman & Henson data
• Face versus Scrambled, binary classification
• Linear Discriminant Analysis (LDA) as machine learning algorithm
• 204 channels (the gradiometers) x 121 time points
• 5-fold cross-validation
• Just for sub-01

Accuracy (mean across 5 folds): 65%
(this is terrible, a Logistic Regression classifier will do much better)

Questions:
1. Is our accuracy statistically significantly better than chance  (=50%)?
2. What information did our machine learning model use?



Statistical testing: random permutations
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Statistical testing: random permutations

P < 0.001
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Visualizing regression weights
Plotting the weights as if they were an evoked response:

large weight ≠ contains useful information (face vs. scrambled)

AU



Visualizing patterns
P = cov(X) W cov-1(Y)      see: Haufe et al. NeuroImage (2014)

large pattern = contains useful information (face vs. scrambled)

AU



Interactive explanation of weights vs patterns

https://users.aalto.fi/~vanvlm1/posthoc/regression.html

https://users.aalto.fi/~vanvlm1/posthoc/regression.html


Interactive explanation of weights vs patterns

Only the informative component is present in the data



Interactive explanation of weights vs patterns

A second, uninformative brain component is also present



Interactive explanation of weights vs patterns

Multiple uninformative components are present



Interactive explanation of weights vs patterns

The uninformative components (“noise”) is spherical
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Representational space
MNIST pixel space

https://projector.tensorflow.org

The MNIST database is a large 
dataset of handwritten digits, 
collected by the US Census 
Bureau.

https://projector.tensorflow.org/


Representation space
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Hultén et al. (2021)



Mapping brain ßà representation space
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Mapping brain ßà representation space
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Decoding accuracy over time

Hultén et al. (2021)



Using AI models to create representational spaces

“low level” visual features

“high level” visual features



Using AI models to create representational spaces

Caucheteux & King (2022)



Mapping brain activity to the inner layer of an autoencoder
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Mapping brain activity to the inner layer of an autoencoder

Benchetrit et al. (2024)



Take-aways

1. Multivariate analysis tracks information content

2. Machine learning sees your data as a cloud of points

3. More observations is always better, more features may not be

4. Always isolate your train and test sets

5. Use random permutations to determine statistical significance

6. Visualize and interpret patterns, not weights

7. You can map brain patterns to embedding spaces


